scholarly journals Surface-Based Analysis of Leaf Microstructures for Adsorbing and Retaining Capability of Airborne Particulate Matter in Ten Woody Species

Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 946
Author(s):  
Myeong Ja Kwak ◽  
Jong Kyu Lee ◽  
Sanghee Park ◽  
Handong Kim ◽  
Yea Ji Lim ◽  
...  

We evaluated surface-based analysis for assessing the possible relationship between the microstructural properties and particulate matter (i.e., two size fractions of PM2.5 and PM10) adsorption efficiencies of their leaf surfaces on ten woody species. We focused on the effect of PM adsorption capacity between micro-morphological features on leaf surfaces using a scanning electron microscope and a non-contact surface profiler as an example. The species with higher adsorption of PM10 on leaf surfaces were Korean boxwood (Buxus koreana Nakai ex Chung & al.) and evergreen spindle (Euonymus japonicus Thunb.), followed by yulan magnolia (Magnolia denudata Desr.), Japanese yew (Taxus cuspidata Siebold & Zucc.), Japanese horse chestnut (Aesculus turbinata Blume), retusa fringetree (Chionanthus retusus Lindl. & Paxton), maidenhair tree (Ginkgo biloba L.), and royal azalea (Rhododendron schlippenbachii Maxim.). There was a higher capacity for the adsorption of PM2.5 on the leaf surfaces of B. koreana and T. cuspidata, followed by A. turbinata, C. retusus, E. japonicus, G. biloba, and M. denudata. In wax layer tests, T. cuspidata, A. turbinata, R. schlippenbachii, and C. retusus showed a statistically higher PM2.5 capturing capacity than the other species. Different types of trichomes were distributed on the adaxial and abaxial leaves of A. turbinata, C. retusus, M. denudata, pagoda tree (Styphnolobium japonicum (L.) Schott), B. koreana, and R. schlippenbachii; however, these trichomes were absent on both sides of the leaves of G. biloba, tuliptree (Liriodendron tulipifera L.), E. japonicus, and T. cuspidata. Importantly, leaf surfaces of G. biloba and S. japonicum with dense or thick epicuticular leaf waxes and deeper roughness revealed lower PM adsorption. Based on the overall performance of airborne PM capture efficiency, evergreen species such as B. koreana, T. cuspidata, and E. japonicus showed the best results, whereas S. japonicum and L. tulipifera had the lowest capture. In particular, evergreen shrub species showed higher PM2.5 depositions inside the inner wall of stomata or the periphery of guard cells. Therefore, in leaf microstructural factors, stomatal size may be related to notably high PM2.5 holding capacities on leaf surfaces, but stomatal density, trichome density, and roughness had a limited effect on PM adsorption. Finally, our findings indicate that surface-based microstructures are necessarily not a correlation for corresponding estimates with leaf PM adsorption.

Nukleonika ◽  
2016 ◽  
Vol 61 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Lucyna Samek ◽  
Zdzislaw Stegowski ◽  
Leszek Furman

Abstract Samples of PM10 and PM2.5 fractions were collected between the years 2010 and 2013 at the urban area of Krakow, Poland. Numerous types of air pollution sources are present at the site; these include steel and cement industries, traffic, municipal emission sources and biomass burning. Energy dispersive X-ray fluorescence was used to determine the concentrations of the following elements: Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, As and Pb within the collected samples. Defining the elements as indicators, airborne particulate matter (APM) source profiles were prepared by applying principal component analysis (PCA), factor analysis (FA) and multiple linear regression (MLR). Four different factors identifying possible air pollution sources for both PM10 and PM2.5 fractions were attributed to municipal emissions, biomass burning, steel industry, traffic, cement and metal industry, Zn and Pb industry and secondary aerosols. The uncertainty associated with each loading was determined by a statistical simulation method that took into account the individual elemental concentrations and their corresponding uncertainties. It will be possible to identify two or more sources of air particulate matter pollution for a single factor in case it is extremely difficult to separate the sources.


2011 ◽  
Vol 4 (3-4) ◽  
pp. 235-242 ◽  
Author(s):  
Michaela Kendall ◽  
Kayihan Pala ◽  
Sumru Ucakli ◽  
Seref Gucer

Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 866 ◽  
Author(s):  
Marzena Rachwał ◽  
Małgorzata Wawer ◽  
Mariola Jabłońska ◽  
Wioletta Rogula-Kozłowska ◽  
Patrycja Rogula-Kopiec

The main objective of this research was the determination of the geochemical and mineralogical properties of particulate matter: TSP (total suspended particles) and, especially PM1 (particles with aerodynamic diameter not greater than 1 µm) suspended in the air of a selected urban area in southern Poland. Identification of the emission sources of metals and metalloids bound in TSP and PM1 as well as the assessment of potential risk of urban ambient air to human health using hazard indices was an additional aim of this investigation. The daily TSP and PM1 quartz fiber filters collected during heating season were subjected to mass magnetic susceptibility (χ) measurements, SEM (Scanning Electron Microscopy) observations and geochemical analyses. Obtained results revealed that the concentration of TSP and PM1 well correlated with their mass-specific magnetic susceptibility. The good relationship between the PM concentration and χ suggests that magnetic susceptibility measurements can be a good proxy of low-level atmospheric dust pollution. The rank order of potentially toxic elements (PTE) based on average concentration was Ba > Zn > Al > Fe > Pb > Mn > Ti > Cu > Cr > Ni >As > Cd > V > Tl, both for TSP and PM1. PM1/TSP ratios for PTE concentrations and χ were around or slightly above unity, which indicated that PM1 was the main carrier of PTE (with the exception of cadmium, copper and lead) and technogenic magnetic particles. The non-carcinogenic and carcinogenic risks were confirmed by very high values of human health indices.


Sign in / Sign up

Export Citation Format

Share Document