magnolia denudata
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 1)

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 221
Author(s):  
Hyejin Hyeon ◽  
Ho Bong Hyun ◽  
Boram Go ◽  
Sung Chun Kim ◽  
Yong-Hwan Jung ◽  
...  

Magnolia flower buds are a source of herbal medicines with various active compounds. In this study, differences in the distribution and abundance of major essential oils, phenolic acids, and primary metabolites between white flower buds of Magnolia heptapeta and violet flower buds of Magnolia denudata var. purpurascens were characterised. A multivariate analysis revealed clear separation between the white and violet flower buds with respect to primary and secondary metabolites closely related to metabolic systems. White flower buds contained large amounts of monoterpene hydrocarbons (MH), phenolic acids, aromatic amino acids, and monosaccharides, related to the production of isoprenes, as MH precursors, and the activity of MH synthase. However, concentrations of β-myrcene, a major MH compound, were higher in violet flower buds than in white flower buds, possibly due to higher threonine levels and low acidic conditions induced by comparatively low levels of some organic acids. Moreover, levels of stress-related metabolites, such as oxygenated monoterpenes, proline, and glutamic acid, were higher in violet flower buds than in white flower buds. Our results support the feasibility of metabolic profiling for the identification of phytochemical differences and improve our understanding of the correlated biological pathways for primary and secondary metabolites.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kunjing Wu ◽  
Xiaojing Duan ◽  
Zhonglong Zhu ◽  
Ziyang Sang ◽  
Jie Duan ◽  
...  

Abstract Background Magonlia denudata is an important perennial tree species of the Magnoliaceae family, known for its ornamental value, resistance to smoke pollution and wind, role in air purification, and robust cold tolerance. In this study, a high-throughput transcriptome analysis of leaf buds was performed, and gene expression following artificial acclimation 22 °C, 4 °C and 0 °C, was compared by RNA sequencing. Results Over 426 million clean reads were produced from three libraries (22 °C, 4 °C and 0 °C). A total of 74,503 non-redundant unigenes were generated, with an average length of 1173.7 bp (N50 = 1548). Based on transcriptional results, 357 and 235 unigenes were identified as being upregulated and downregulated under cold stress conditions, respectively. Differentially expressed genes were annotated using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway analyses. The transcriptomic analysis focused on carbon metabolism and plant hormone signal transduction associated with cold acclimation. Transcription factors such as those in the basic helix-loop-helix and AP2/ERF families were found to play an important role in M. denudata cold acclimation. Conclusion M. denudata exhibits responses to non-freezing cold temperature (4 °C) to increase its cold tolerance. Cold resistance was further strengthened with cold acclimation under freezing conditions (0 °C). Cold tolerance genes, and cold signaling transcriptional pathways, and potential functional key components for the regulation of the cold response were identified in M. denudata. These results provide a basis for further studies, and the verification of key genes involved in cold acclimation responses in M. denudata lays a foundation for developing breeding programs for Magnoliaceae species.


2021 ◽  
Vol 705 (1) ◽  
pp. 012007
Author(s):  
Jianguo Zhang ◽  
Miaowei Wu ◽  
Mingru Zhang ◽  
Xifan Chen ◽  
Jie Yang

Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 946
Author(s):  
Myeong Ja Kwak ◽  
Jong Kyu Lee ◽  
Sanghee Park ◽  
Handong Kim ◽  
Yea Ji Lim ◽  
...  

We evaluated surface-based analysis for assessing the possible relationship between the microstructural properties and particulate matter (i.e., two size fractions of PM2.5 and PM10) adsorption efficiencies of their leaf surfaces on ten woody species. We focused on the effect of PM adsorption capacity between micro-morphological features on leaf surfaces using a scanning electron microscope and a non-contact surface profiler as an example. The species with higher adsorption of PM10 on leaf surfaces were Korean boxwood (Buxus koreana Nakai ex Chung & al.) and evergreen spindle (Euonymus japonicus Thunb.), followed by yulan magnolia (Magnolia denudata Desr.), Japanese yew (Taxus cuspidata Siebold & Zucc.), Japanese horse chestnut (Aesculus turbinata Blume), retusa fringetree (Chionanthus retusus Lindl. & Paxton), maidenhair tree (Ginkgo biloba L.), and royal azalea (Rhododendron schlippenbachii Maxim.). There was a higher capacity for the adsorption of PM2.5 on the leaf surfaces of B. koreana and T. cuspidata, followed by A. turbinata, C. retusus, E. japonicus, G. biloba, and M. denudata. In wax layer tests, T. cuspidata, A. turbinata, R. schlippenbachii, and C. retusus showed a statistically higher PM2.5 capturing capacity than the other species. Different types of trichomes were distributed on the adaxial and abaxial leaves of A. turbinata, C. retusus, M. denudata, pagoda tree (Styphnolobium japonicum (L.) Schott), B. koreana, and R. schlippenbachii; however, these trichomes were absent on both sides of the leaves of G. biloba, tuliptree (Liriodendron tulipifera L.), E. japonicus, and T. cuspidata. Importantly, leaf surfaces of G. biloba and S. japonicum with dense or thick epicuticular leaf waxes and deeper roughness revealed lower PM adsorption. Based on the overall performance of airborne PM capture efficiency, evergreen species such as B. koreana, T. cuspidata, and E. japonicus showed the best results, whereas S. japonicum and L. tulipifera had the lowest capture. In particular, evergreen shrub species showed higher PM2.5 depositions inside the inner wall of stomata or the periphery of guard cells. Therefore, in leaf microstructural factors, stomatal size may be related to notably high PM2.5 holding capacities on leaf surfaces, but stomatal density, trichome density, and roughness had a limited effect on PM adsorption. Finally, our findings indicate that surface-based microstructures are necessarily not a correlation for corresponding estimates with leaf PM adsorption.


2020 ◽  
Vol 15 (1) ◽  
pp. 417-426
Author(s):  
Pengjie Chang ◽  
Zhen Wu ◽  
Nannan Song ◽  
Sainan Bian ◽  
Ninghang Wang ◽  
...  

Author(s):  
N. Nuzhyna ◽  
A. Holubenko ◽  
R. Palagecha ◽  
O. Futorna ◽  
N. Genzerska ◽  
...  

In connection with global climatic changes, which are accompanied by sharp temperature fluctuations, it is important to study the heat resistance of relict plants in order to improve the understanding of the mechanisms of adaptation and survival of organisms in these conditions. Identification of rare and useful plant species more resistant to high temperatures will make it possible to recommend them for use in landscaping, agriculture, medicine, and the like. The work was carried out on magnolias and ginkgo, since these plants are not only important for landscape design all over the world, but are also valued for the content of biologically active substances that are used in medicine and agriculture. Plants of Ginkgo biloba L., Magnolia obovata Thunb., Magnolia kobus DC. and Magnolia denudata Desr. warmed up for three hours at + 40 ° C, the control group was at + 26 ° C. The stress response was analyzed for the level of lipid peroxidation, superoxide dismutase and peroxidase activity, as well as the content of flavonoids and photosynthetic pigments in the studied plants. The photosynthesizing system of all studied species did not undergo any damaging effects due to the action of hyperthermia. Ginkgo biloba plants have shown very high resistance to high temperatures and stability of the antioxidant and pigment systems. Representatives of all the species of magnolia that we have considered can be positioned in the direction of decreasing resistance to sudden increases in temperature: Magnolia kobus → Magnolia obovata → Magnolia denudata. A higher resistance to hyperthermia was found in plants native to Japan. M. denudata was the least resistant species, possibly due to insufficient activity of antioxidant enzymes.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6708
Author(s):  
Chulan Zhang ◽  
Fengshuo Sun ◽  
Biao Xiong ◽  
Zhixiang Zhang

Background Mitochondria are the center of energy metabolism and the production of reactive oxygen species (ROS). ROS production results in a burst of “superoxide flashes”, which is always accompanied by depolarization of mitochondrial membrane potential. Superoxide flashes have only been studied in the model plant Arabidopsis thaliana using a complex method to isolate mitochondria. In this study, we present an efficient, easier method to isolate functional mitochondria from floral tissues to measure superoxide flashes. Method We used 0.5 g samples to isolate mitochondria within <1.5 h from flowers of two non-transgenic plants (Magnolia denudata and Nelumbo nucifera) to measure superoxide flashes. Superoxide flashes were visualized by the pH-insensitive indicator MitoSOX Red, while the mitochondrial membrane potential (ΔΨ m) was labelled with TMRM. Results Mitochondria isolated using our method showed a high respiration ratio. Our results indicate that the location of ROS and mitochondria was in a good coincidence. Increased ROS together with a higher frequency of superoxide flashes was found in mitochondria isolated from the flower pistil. Furthermore, a higher rate of depolarization of the ΔΨ m was observed in the pistil. Taken together, these results demonstrate that the frequency of superoxide flashes is closely related to depolarization of the ΔΨ m in petals and pistils of flowers.


Sign in / Sign up

Export Citation Format

Share Document