scholarly journals Success Factors for Experimental Partial Harvesting in Unmanaged Boreal Forest: 10-Year Stand Yield Results

Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1199
Author(s):  
Louiza Moussaoui ◽  
Alain Leduc ◽  
Miguel Montoro Girona ◽  
Annie Claude Bélisle ◽  
Benoit Lafleur ◽  
...  

Over the past two decades, partial harvesting has been increasingly used in boreal forests as an alternative to clearcutting to promote irregular stand structures and maintain a balance between biodiversity preservation and continued timber production. However, relatively little is still known about the silvicultural potential of partial harvesting in Canada’s boreal forest, especially in areas prone to organic matter accumulation (paludification), and most prior research has focused on biodiversity responses. In this study, we assess the effects of partial harvesting on stand development (recruitment, growth, and mortality) ten years after harvesting in previously unmanaged black spruce stands and quantify its effectiveness in reducing the impacts on ecosystem structures. Our analyses revealed that pre-harvest stand structure and site characteristics, especially initial basal area, sapling density, tree diameter, and organic layer thickness (OLT) were major factors involved in stand development ten years following these partial harvesting treatments. Depending on pre-harvest structure and site characteristics, partial harvesting can result in either an increase in post-harvest tree recruitment and growth or a loss of stand volume because of standing tree mortality. To increase the chances of partial harvesting success in ensuring an increase in decennial stand yield after harvest in black spruce forest stands, sites prone to paludification (i.e., where OLT >17 cm) should be left unharvested. This study illustrates the importance of taking into account pre-existing structure and site characteristics in the selection of management strategies to maximize the potential of partial harvesting to achieve sustainable forest management in black spruce stands.

1984 ◽  
Vol 14 (2) ◽  
pp. 163-176 ◽  
Author(s):  
David A. MacLean ◽  
A. Wayne Kline ◽  
Daniel R. Lavigne

Tree mortality and defoliation were examined in 45 spruce (Picea sp.) stands protected against damage by spruce budworm (Choristoneurafumiferana (Clem.)) and in 27 unprotected spruce stands in New Brunswick, and were related to tree, stand, and site characteristics. The "protected" and "unprotected" classes of stands were defined on the basis of any spraying in the last 5 years (1978–1982), but we also estimated the spray and budworm hazard history from 1973 to 1982 for each stand. Based on this total sample of about 17 000 trees, there was little difference in mortality levels of spruce or combined spruce–fir (Abiesbalsamea (L.) Mill.) between protected and unprotected stands. Spruce mortality was relatively low in both protected and unprotected stands, averaging about 13 and 20% of the total volume, respectively. Fir mortality was higher in unprotected than in protected stands, although fir formed only a minor component of most of the sampled stands. Both average mortality and range were similar among the four spruce types present in New Brunswick: black spruce (Piceamariana (Mill.) B.S.P.), red spruce (Picearubens Sarg.), hybrid red–black spruce, and white spruce (Piceaglauca (Moench) Voss). In examining the relation of tree mortality to stand and site characteristics, the strongest correlations were found between dead spruce–fir volume (cubic metres per hectare) and total stand volume (r = 0.85), and between dead fir volume and total fir volume (r = 0.75). No apparent relationships were observed between mortality levels and various indices of protection and budworm hazard. It should be emphasized in presenting these results that the spray program in New Brunswick has historically been designed to protect fir, so that any protection afforded to spruce would be entirely an incidental benefit from attention to the fir problem. Although our results do not reflect a failure of a clearly defined effort to protect spruce, we do recommend that further protection efforts for spruce in New Brunswick be reevaluated.


2003 ◽  
Vol 79 (2) ◽  
pp. 318-328 ◽  
Author(s):  
D Boucher ◽  
L De Grandpré ◽  
S Gauthier

Forest stand structure is an important element for biodiversity and, from a sustainable forest management perspective, uneven-sized stands should be managed in order to maintain the structural diversity over the landscape. The first objective of this study is to develop a statistical tool to characterize stand structure that can be used in forest management planning. The second objective is to classify the stand structure of two regions to illustrate a possible use for the tool. The statistical tool for characterizing stand structure has been developed from forest inventory data gathered by the ministère des Ressources naturelles du Québec, using discriminant analysis. The analysis makes it possible to classify the stands into three types of structure, even-sized, uneven-sized and inverse J-shaped, with an error rate estimated at only 7%. Proportions of different structure types in Quebec’s eastern black spruce forest region have been compared with those found in the western black spruce forest region. Nearly 90% of the western black spruce forest region is composed of pure black spruce stands, contrary to the eastern black spruce region, where there are more pure fir and mixed spruce-fir stands. Most of the western black spruce forest stands are even-sized (62%), while almost 70% of the eastern black spruce forest stands are uneven-sized or inverse J-shaped. Pure black spruce stands are more even-sized than pure fir stands, but regional differences are also found within pure black spruce stands. Our results show that it is possible to develop a robust tool that makes it possible to classify thousands of stands rapidly. Such tools are required if we want to consider stand structure for appropriate management prescriptions in the boreal forest. Key words: Even- and uneven-sized structure, fire regime, Picea mariana, Abies balsamea, boreal forest, structural diversity


2020 ◽  
Vol 139 (6) ◽  
pp. 989-998
Author(s):  
Sauli Valkonen ◽  
Lucie Aulus Giacosa ◽  
Juha Heikkinen

Abstract This study focused on tree mortality in spruce-dominated stands managed using the single-tree selection method in southern Finland. Together with regeneration and tree growth, mortality is one of the basic elements of the stand structure and dynamics in selection stands. The study was based on data acquired from a set of 20 permanent experimental plots monitored with repeated measurements for 20 years. The average mortality in the number of stems (N) was 4.45 trees ha−1a−1, in basal area (G) 0.07 m2 ha−1a−1, and in stemwood volume (V) 0.56 m3 ha−1a−1. In relative terms it was 0.50% of N, 0.30% of G and 0.27% of V, respectively. Wind and snow were the most common causes of mortality, while deaths by biotic causes (mammals, insects, pathogens) were extremely rare. Some 6–10% of the total loss in the number of stems and volume was attributable to the loss or removal of trees that sustained serious damage in harvesting. Most of the mortality occurred in the smallest diameter classes of up to 20 cm. Such a high mortality among small trees can have an adverse influence on the sustainability of selection structures if not successfully checked in harvesting and management.


2007 ◽  
Vol 37 (9) ◽  
pp. 1563-1571 ◽  
Author(s):  
H. C. Thorpe ◽  
S. C. Thomas ◽  
J. P. Caspersen

Variants of partial harvesting are gaining favour as means to balance ecosystem management and timber production objectives on managed boreal forest landscapes. Understanding how residual trees respond to these alternative silvicultural treatments is a critical step towards evaluating their potential from either a conservation or a wood supply perspective. We used dendroecological techniques combined with a chronosequence approach to quantify the temporal radial growth response pattern of residual black spruce ( Picea mariana (Mill.) BSP) trees to partial harvest in northeastern Ontario. At its peak, 8–9 years after harvest, radial growth of residual trees had doubled. The growth pattern was characterized by a 2-year phase of no response, a subsequent period of increase 3–9 years after harvest, and a stage of declining rates 10–12 years after harvest. The magnitude of tree growth response depended strongly on tree age: peak postharvest growth was substantially higher for young trees, while old trees displayed only modest growth increases. Both the large magnitude and the time delay in postharvest growth responses have important implications for the development of more accurate quantitative tools to project future yields and, more generally, for determining whether partial harvesting is a viable management option for the boreal forest.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 333 ◽  
Author(s):  
Stephanie A. Jean ◽  
Bradley D. Pinno ◽  
Scott E. Nielsen

Research Highlights: Black spruce (Picea mariana Mill.) and trembling aspen (Populus tremuloides Michx.) both regenerated vigorously after wildfire. However, pure semi-upland black spruce stands are at increasing risk of changing successional trajectories, due to greater aspen recruitment. Background and Objectives: Black spruce and aspen are found across the boreal forest with black spruce dominating lowlands and aspen being common in uplands. Both species are well adapted to wildfire with black spruce holding an aerial seedbank while aspen reproduce rapidly via root suckering. In the summer of 2016, the Horse River wildfire burned 589,617 hectares of northern Alberta’s boreal forest. Methods: We assessed early regeneration dynamics of both pure aspen and pure black spruce forests. For black spruce, 12 plots were established in both bog and semi-upland habitats to assess seedling regeneration and seedbed availability. For aspen, 12 plots were established in each of the low, moderate, and high burn severities, as well as 5 unburned plots. Results: Post-fire black spruce regeneration densities did not differ between bog and semi-upland habitats, but were positively correlated with forb cover and charred organic matter seedbeds. Aspen regeneration within pure black sprue stands was substantial, particularly in semi-upland habitats, indicating a potential shift in successional trajectory. Fire severity did not significantly affect aspen regeneration in pure aspen stands, but regeneration density in all severity types was >90,000 stems ha−1. Aspen regeneration densities were negatively related to post-fire forb and shrub cover, likely due to competition and cooler soil temperature.


2010 ◽  
Vol 114 (7) ◽  
pp. 1494-1503 ◽  
Author(s):  
K. Barrett ◽  
E.S. Kasischke ◽  
A.D. McGuire ◽  
M.R. Turetsky ◽  
E.S. Kane

2014 ◽  
Vol 44 (10) ◽  
pp. 1165-1176 ◽  
Author(s):  
François Girard ◽  
Louis De Grandpré ◽  
Jean-Claude Ruel

As climate changes, boreal forest ecosystems may become subject to disturbances that were previously uncommon in some regions. In recent decades, large tracts of northeastern boreal forest of Canada have been affected by different types of climatic events causing a lot of partial and some total stand mortality. Since these disturbances may become more important drivers of forest dynamics, there is a need to document their impact on forest structure. The objectives of this study were to describe temporal dynamics of partial windthrows and determine the effect of partial windthrow on stand composition and understory vegetation. The study was conducted in the North-Shore region of Quebec (Canada). Eighteen plots in closed forests were paired with 18 adjacent windthrow areas, in which trees experienced similar edaphic and climatic conditions. Dendroecological analyses, combined with vegetation sampling, were conducted on each site to determine stand structure and vegetation development through time. Significant increases in balsam fir and shade-tolerant species were observed in windthrow gaps. Tree mortality in windthrown stands was a slow process until the mid-1990s, a period during which spruce budworm defoliation may have played a role in weakening trees and making them more vulnerable to partial windthrow. Greater mortality observed following the mid-1990s was most certainly related to a regional storm. The initial composition of stands plays an important role in driving postwindthrow succession, as balsam fir is more susceptible to treefall. As opposed to stand-replacing windthrow and spruce budworm outbreaks that generate various postdisturbance responses, partial windthrow appears to only create opportunities for pre-established balsam fir to undergo release in gaps.


2001 ◽  
Vol 79 (4) ◽  
pp. 420-428 ◽  
Author(s):  
Jean-François Giroux ◽  
Yves Bergeron ◽  
Jean J Veillette

Giant circular patterns of low tree density in black spruce (Picea mariana) stands were investigated in the Abitibi region of Quebec. We used dendrochronological techniques to test the hypotheses that ring patterns of low tree density are caused either by radial changes in spruce mortality or productivity. Seven circles were sampled. We found no gradient in the age of spruce along circle radii suggesting that rings of low tree density do not expand radially, that is, they are not spatially dynamic entities. The results indicate, however, that spruce trees were less dense and productive within the rings due to excessive moisture in the soil. Measurements of surface elevation, thickness of the organic layer and elevation of the mineral substrate across the circles revealed that a depression in the mineral soil beneath the rings traps the surface water and this area of poor drainage seems to prevent the establishment of black spruce within the rings. The origin of the ring-shaped depressions was attributed to geological or geomorphological causes.Key words: black spruce, Picea mariana, mortality, productivity, rings, geomorphology.


Sign in / Sign up

Export Citation Format

Share Document