scholarly journals Is the Seasonal Variation in Frost Resistance and Plant Performance in Four Oak Species Affected by Changing Temperatures?

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 369
Author(s):  
Maggie Preißer ◽  
Solveig Franziska Bucher

Research Highlights: We found seasonal variation in frost resistance (FR) and plant performance which were affected by growth temperature. This helps to better understand ecophysiological processes in the light of climate change. Background and Objectives: FR and photosynthesis are important plant characteristics that vary with the season. The aim of this study was to find out whether there is a seasonal variation in FR, photosynthetic CO2 assimilation rates and leaf functional traits associated with performance such as specific leaf area (SLA), leaf dry matter content (LDMC), chlorophyll content, stomatal characteristics and leaf thickness in two evergreen and two deciduous species, and whether this is influenced by different temperature treatments. Additionally, the trade-off between FR and photosynthetic performance, and the influence of leaf functional traits was analyzed. By understanding these processes better, predicting species behavior concerning plant performance and its changes under varying climate regimes can be improved. Materials and Methods: 40 individuals of four oak species were measured weekly over the course of ten months with one half of the trees exposed to frost in winter and the other half protected in the green house. Two of these species were evergreen (Quercus ilex L., Quercus rhysophylla Weath.), and two were deciduous (Quercus palustris L., Quercus rubra L.). We measured FR, the maximum assimilation rate at light saturation under ambient CO2 concentrations (Amax), chlorophyll fluorescence and the leaf functional traits SLA, LDMC, stomatal pore area index (SPI), chlorophyll content (Chl) and leaf thickness. Results: All parameters showed a significant species-specific seasonal variation. There was a difference in all traits investigated between evergreen and deciduous species and between the two temperature treatments. Individuals that were protected from frost in winter showed higher photosynthesis values as well as SLA and Chl, whereas individuals exposed to frost had overall higher FR, LDMC, SPI and leaf thickness. A trade-off between FR and SLA, rather than FR and photosynthetic performance was found.

2021 ◽  
Author(s):  
vivek pandi ◽  
Kanda Naveen Babu

Abstract The present study was carried out to analyse the leaf functional traits of co-occurring evergreen and deciduous tree species in a tropical dry scrub forest. This study also intended to check whether the species with contrasting leaf habits differ in their leaf trait plasticity, responding to the canopy-infestation by lianas. A total of 12 leaf functional traits were studied for eight tree species with contrasting leaf habits (evergreen and deciduous) and liana-colonization status (Liana+ and Liana−). In the liana-free environment (L−), evergreen trees had significantly higher specific leaf mass (LMA) and leaf dry matter content (LDMC) than the deciduous species. Whereas, the deciduous trees had higher specific leaf area (SLA) and mass-based leaf nitrogen concentration (Nmass). The leaf trait-pair relationship in the present study agreed to the well-established global trait-pair relationships (SLA Vs Nmass, Lth Vs SLA, Nmass Vs Lth, Nmass Vs LDMC, LDMC Vs SLA). There was no significant difference between L+ and L− individuals in any leaf functional traits studied in the deciduous species. However, evergreen species showed marked differences in the total chlorophyll content (Chlt), chlorophyll b (Chlb), SLA, and LMA between L+ and L− individuals of the same species. Deciduous species with the acquisitive strategy can have a competitive advantage over evergreen species in the exposed environment (L−) whereas, evergreen species with shade-tolerant properties were better acclimated to the shaded environments (L+). The result revealed the patterns of convergence and divergence in some of the leaf functional traits between evergreen and deciduous species. The results also showed the differential impact of liana colonization on the host trees with contrasting leaf habits. Therefore, liana colonization can significantly impact the C-fixation strategies of the host trees by altering their light environment. Further, the magnitude of such impact may vary among species of different leaf habits. The increased proliferation of lianas in the tropical forest canopies may pose a severe threat to the whole forest carbon assimilation rates.


2021 ◽  
Author(s):  
Souparna Chakrabarty ◽  
Sheetal Sharma ◽  
Shatarupa Ganguly ◽  
Asmi Jezeera ◽  
Neha Mohanbabu ◽  
...  

AbstractLeaf phenology based classification of woody species into discrete evergreen and deciduous categories is widely used in ecology, but these categories hide important variation in leaf phenological behaviour. Few studies have examined the continuous nature of deciduousness and our understanding of variation in quantitative estimates of leaf shedding behaviour and the causes and consequences of this is limited. In this study we monitored leaf phenology in 75 woody species from a seasonally dry tropical forest to quantify three quantitative measures of deciduousness, namely: maximum canopy loss, duration of deciduousness, and average canopy loss. Based on proposed drought tolerance and drought avoidance strategies of evergreen and deciduous species, respectively, we tested whether the quantitative measures of deciduousness were related to leaf functional traits. Additionally, to understand the functional consequences of variation in deciduousness we examined relationships with the timing of leaf flushing and senescing. We found wide and continuous variation in quantitative measures of deciduousness in these coexisting species. Variation in deciduousness was related to leaf function traits, and the timing of leaf flushing. Along a continuous axis ranging from evergreen to deciduous species, increasing deciduousness was associated with more acquisitive leaf functional traits, with lower leaf mass per area and leaf dry matter content, and greater leaf nitrogen content. These results indicate that the continuous nature of deciduousness is an important component of resource acquisition strategies in woody species from seasonally dry forests.


2019 ◽  
Author(s):  
Shanjia Li ◽  
Wei Gou ◽  
Hui Wang ◽  
Guoqiang Wu ◽  
Peixi Su

Abstract Abstract Background: Understanding salinity resistance and water utilization on shrub species is a challenge to the management and conservation of desert halophytes. Lycium ruthenicum Murr.with a significant soil and water conservation capacity, is one of the dominant shrubs and halophytes in the lower reaches of the Heihe River, Northwest China. In this paper, the effects of two depths (0-40 and 40-80 cm) of soil salinities and water contents on the leaf functional traits of eight L. ruthenicum communities in different distances from the main channel were studied. Fourteen leaf water physiological and ecological stoichiometric traits were investigated, linking with soil factors to explain desert plant trade-off strategies. Results: Specific leaf volume (SLV), specific leaf area (SLA), leaf thickness (LT), nitrogen (N), C:N, C:P could serve as good indicators of drought and saline resistance. Low N, specific leaf area (SLA) indicated that the plant was located at the slow investment-return axis of the species resource utilization. Low C:N, C:P showed that L. ruthenicum had a defensive life history strategy at drought and salinity areas. The RDA results showed that 0-40 and 40-80 cm soil properties respectively explained 93.45% and 99.96% leaf traits variation. Soil water contents, HCO3- had extremely positive correlation (P<0.01) with leaf functional traits. Shallow soil water contents significantly affects P, and deeper soil water contents significantly responds C and N; shallow soil salinity significantly affected LT, C and N contents, whereas deeper soil salinity significantly affected N and SLV. Conclusions: L. ruthenicum had a foliar resource acquisition and resource conservation trade-off with a defensive life history strategy in the area of drought and salinity. This finding provides baseline information to facilitate the management and restoration of arid-saline desert ecosystem.


2021 ◽  
Author(s):  
Shanjia Li ◽  
Wei Gou ◽  
Hui Wang ◽  
Guoqiang Wu ◽  
Peixi Su

Abstract Background: Soil salinization affects plant growth and causes changes in leaf traits. Lycium ruthenicum Murr. is one of the dominant shrubs and halophytes in the lower reaches of the Heihe River in Northwest China. We analyzed the trade-off relationship of fourteen leaf functional traits of eight L.ruthenicum populations growing at varying distances from the Heihe River, and discussed the effects that soil moisture and salinity have on leaf functional traits. Results: Lower nitrogen (N) contents indicated that L.ruthenicum was located at the slow investment-return axis of the species resource utilization graph. Compared with non-saline and very slightly saline sites, populations of slightly saline sites showed higher carbon to nitrogen ratio (C:N). Redundancy analysis (RDA) revealed a relatively strong relationship between leaf functional traits and soil properties, the first RDA axis accounted for 70.99 % and 71.09 % of the variation in 0-40 cm and 40-80 cm of soil moisture and salinity. Populations in non-saline and very slightly saline habitats tended to have higher leaf C content, whereas populations in slightly saline habitats tended to have lower leaf C content, and the discrepancy was evident. Relative importance analysis found that in the 0-40 cm soil layer, leaf traits variations were mainly influenced by soil moisture (SWC), HCO3- and CO32- ions content, while leaf trait variations in the 40-80 cm soil layer were mainly influenced by HCO3- and SO42-. Conclusions: The leaf functional traits of L. ruthenicum in this region are mainly restricted by soil N content. The L.ruthenicum populations formed a pattern of increased C:N ratios and C content, reduced nitrogen to phosphorus ratio (N:P) and N content from very slightly saline soil to slightly saline. L.ruthenicum has a foliar resource acquisition method and a resource conservation trade-off with a flexible life history strategy in habitats with drought and salinity stress. In the shallow soil layers, water affects greater than salt on leaf traits variation; in both shallow and deep soil layers, HCO3- plays a dominant role on leaf traits. We believe that these findings will provide some baseline information to facilitate the management and restoration of arid-saline desert ecosystems.


2021 ◽  
Vol 11 (4) ◽  
pp. 1937
Author(s):  
Jiyou Zhu ◽  
Qing Xu ◽  
Jiangming Yao ◽  
Xinna Zhang ◽  
Chengyang Xu

Studies on the influence of parasitism on plants based on hyperspectral analysis have not been reported so far. To fully understand the variation characteristics and laws of leaf reflectance spectrum and functional traits after the urban plant parasitized by Cuscuta japonica Choisy. Osmanthus fragrans (Thunb.) Lour. was taken as the research object to analyze the spectral reflectance and functional traits characteristics at different parasitical stages. Results showed that the spectral reflectance was higher than those being parasitized in the visible and near-infrared range. The spectral reflectance in 750~1400 nm was the sensitive range of spectral response of host plant to parasitic infection, which is universal at different parasitic stages. We established a chlorophyll inversion model (y = −65913.323x + 9.783, R2 = 0.6888) based on the reflectance of red valley, which can be used for chlorophyll content of the parasitic Osmanthus fragrans. There was a significant correlation between spectral parameters and chlorophyll content index. Through the change of spectral parameters, we can predict the chlorophyll content of Osmanthus fragrans under different parasitic degrees. After being parasitized, the leaf functional traits of host plant were generally characterized by large leaf thickness, small leaf area, small specific leaf area, low relative chlorophyll content, high leaf dry matter content and high leaf tissue density. These findings indicate that the host plant have adopted a certain trade-off strategy to maintain their growth in the invasion environment of parasitic plants. Therefore, we suspect that the leaf economics spectrum may also exist in the parasitic environment, and there was a general trend toward the “slow investment-return” type in the global leaf economics spectrum.


2021 ◽  
Author(s):  
Jiyou Zhu ◽  
Qing Xu ◽  
Chengyang Xu ◽  
Xinna Zhang

Abstract Background: Functional trait-based ecological research has been instrumental in advancing our understanding of understanding of environmental changes. It is still, however, unclear how the functional traits of urban plants respond to atmospheric particulate pollution, and what trade-off strategies are shown. In order to explore the variation of plant functional traits with urban atmospheric particulate pollution gradient, we divided atmospheric particulate pollution into three levels according to road distance, and measured the variation of six key leaf functional traits and their trade-off strategies. Results: Here, we show that the functional traits of plants can be used as predictors or indicators of the response of plant to urban atmospheric particulate pollution. Within studies, there was a positive correlation between leaf thickness, leaf dry matter content, leaf tissue density, stomata density and leaf dust deposition. While chlorophyll content index and specific leaf area were negatively correlated with the leaf dust deposition. Plants improve the efficiency of gas exchange by optimizing the spatial distribution of stomata of leaves. Dust deposition promotes the regular distribution of stomata. Due to the pressure of atmospheric particles, urban plant shows a trade-off relationship of economics spectrum traits at the leaf level. Taken together, these results indicate that urban atmospheric particulate pollution is the main factor causing the variation of plant functional traits. Conclusion:Under the influence of urban atmospheric particulate matter, plant show a "slow investment-return" type in the global leaf economics spectrum, with lower specific leaf area, lower chlorophyll content, larger leaf thickness, higher leaf dry matter content, higher leaf tissue density and higher stomatal density. This finding provides a new perspective for understanding the resource trades-off strategy of plants adapting to air pollution environment.


Diversity ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 453
Author(s):  
Shanjia Li ◽  
Wei Gou ◽  
Hui Wang ◽  
James F. White ◽  
Guoqiang Wu ◽  
...  

Soil properties affect plant growth and cause variation in leaf functional traits. Lycium ruthenicum Murray is one of the desert dominant shrubs and halophytes in the lower reaches of Heihe River, Northwest China. We analyzed the trade-off relationships of 14 leaf functional traits of eight L. ruthenicum populations growing at varying distances from the river and discussed the effects that soil properties have on leaf functional traits. The results showed that: Lower leaf nitrogen (N) content indicated that L. ruthenicum was located at the slow investment–return axis of the species resource utilization graph. Compared with non-saline and very slightly saline habitats, populations of slightly saline habitats showed a higher carbon to nitrogen ratio (C:N). Redundancy analysis (RDA) revealed a relatively strong relationship between leaf functional traits and soil properties, the first RDA axis accounted for 70.99 and 71.09% of the variation in 0–40 and 40–80 cm of soil properties. Relative importance analysis found that in the 0–40 cm soil layer, leaf traits variations were mainly influenced by soil moisture (SWC), HCO3− and CO32− ions content, while leaf traits variations in the 40–80 cm soil layer were mainly influenced by HCO3− and SO42−. L. ruthenicum has a foliar resource acquisition method and a resource conservation trade-off with a flexible life history strategy in habitats with drought and salinity stress. In the shallow soil layers, water affects leaf traits variation greater than salt , and in both shallow and deep soil layers, HCO3− plays a dominant role on leaf traits. This study provides insights into the adversity adaptation strategies of desert plants and the conservation and restoration of arid-saline ecosystems.


2020 ◽  
Author(s):  
Shanjia Li ◽  
Wei Gou ◽  
Hui Wang ◽  
Guoqiang Wu ◽  
Peixi Su

Abstract Background: Soil salinization affects plant growth and causes changes in leaf traits. Lycium ruthenicum Murr. is one of the dominant shrubs and halophytes in the lower reaches of the Heihe River in Northwest China. We analyze the trade-off strategies of fourteen leaf functional traits of eight L.ruthenicum populations growing at varying distances from the Heihe River, and discussed the effects soil moisture and salinity on leaf functional traits. Results: Lower nitrogen (N) contents indicated that L.ruthenicum was located at the slow investment-return axis of the species resource utilization graph. Compared to non-saline and very slightly saline sites, populations of slightly saline sites showed higher carbon to nitrogen ratio (C:N). Redundancy analysis (RDA) revealed a relatively strong relationship between leaf functional traits and soil properties, the first RDA axis accounted for 70.99 % and 71.09 % of the variation in 0-40 cm and 40-80 cm of soil moisture and salinity. Populations in non-saline and very slightly saline habitats tended to have higher leaf C content, whereas populations in slightly saline habitats tended to have lower leaf C content, and the discrepancy was evident. Relative importance analysis found that in the 0-40 cm soil layer, leaf traits variations were mainly influenced by soil moisture (SWC), HCO3- and CO32- ions content, while leaf trait variations in the 40-80 cm soil layer were mainly influenced by HCO3- and SO42-. Conclusions: The leaf functional traits of L. ruthenicum in this region are mainly restricted by soil N content. The L.ruthenicum populations formed a pattern of increased C:N ratios and C content, reduced nitrogen to phosphorus ratio (N:P) and N content from very slightly saline soil to slightly saline. L.ruthenicum has a foliar resource acquisition method and a resource conservation trade-off with a flexible life history strategy in habitats with drought and salinity stress. In the shallow soil layers, water has a greater effect than salt on leaf trait variation, in both shallow and deep soil layers, HCO3- have a relatively important effect on leaf traits. We believe that these findings will provide some baseline information to facilitate the management and restoration of arid-saline desert ecosystems.


Sign in / Sign up

Export Citation Format

Share Document