scholarly journals Color Change and Physical-Mechanical Properties of Polystyrene-Impregnated Glulam from Three Tropical Fast-Growing Wood Species

Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1420
Author(s):  
Yusuf Sudo Hadi ◽  
Dede Hermawan ◽  
Ignasia Maria Sulastiningsih ◽  
Efrida Basri ◽  
Gustan Pari ◽  
...  

The aims of this work were to determine the color change and physical–mechanical properties of polystyrene glulam from three tropical wood species. Wood laminas were cut from logs harvested from a young plantation forest of manii (Maesopsis eminii), mangium (Acacia mangium), and rubber-wood (Hevea brasiliensis). The laminas were impregnated with monomer styrene that was polymerized using potassium peroxy-disulfate as a catalyst and heat. Three-layer glulam was constructed from the polystyrene laminas, using isocyanate glue and cold press. For comparison purposes, three-layer untreated glulam and solid wood samples were prepared. The results showed that the color change of polystyrene glulam was very small compared with untreated glulam. Polystyrene glulam had the highest density, while the density of untreated glulam did not differ from that of the solid wood. The moisture content of all products was matched to the environment, and fulfilled the Japanese standard. Compared with both types of glulams, solid wood had lower values for modulus of rupture (MOR), modulus of elasticity (MOE), and hardness, but higher shear strength. Meanwhile, polystyrene glulam had lower values for MOR and MOE, equal shear strength and wood failure, and higher hardness than the untreated glulam. All glulams had very little delamination in the hot water test. Only rubber-wood glulams fulfilled JAS 234-2003 for MOR, MOE, shear strength, and delamination. To obtain adequate physical–mechanical properties of glulams, medium-density wood is recommended for glulam manufacturing.

2021 ◽  
Vol 891 (1) ◽  
pp. 012007
Author(s):  
Y S Hadi ◽  
E N Herliyana ◽  
I M Sulastiningsih ◽  
E Basri ◽  
R Pari ◽  
...  

Abstract Jabon (Anthocephalus cadamba) laminas were impregnated with polystyrene and reached 21.2% polymer loading. The laminas were manufactured for three-layer glued laminated timber (glulam) using isocyanate glue with glue spread 280 g/m2 and cold-press process. For comparison purposes, untreated glulam as control and also solid wood were prepared. The physical-mechanical properties were evaluated according to the Japanese Agricultural Standard (JAS) 234-2003. The results showed that the color of glulam was not different from polystyrene glulam. The density of polystyrene glulam was higher than untreated glulam and solid wood, but the moisture content was lower than the other. The product kinds of solid wood, untreated glulam, and polystyrene glulam did not affect shear strength and modulus of rupture (MOR), while the modulus of elasticity (MOE) of untreated glulam and hardness of polystyrene glulam were the highest values and the other products were not different one each other. Both kinds of glulam fulfilled the Japanese standard in terms of moisture content, MOR, and delamination in hot water, but MOE and shear strength did not. Regarding its advantages, polystyrene glulam could be further developed using a higher wood density.


2014 ◽  
Vol 1025-1026 ◽  
pp. 42-45 ◽  
Author(s):  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Rosane A.G. Battistelle ◽  
...  

This study aimed, with the aid of analysis of variance (ANOVA), to investigate and quantify the influence of moisture ranging between 12% and over 30% (fiber saturation) on the mechanical properties: strength and modulus of elasticity in compression and in tension parallel to grain; modulus of rupture and modulus of elasticity in static bending; shear strength parallel to grain considering wood species Ipê (Tabebuia sp) and Angelim Araroba (Vataireopsis araroba). Tests were performed according to the assumptions and calculating methods Brazilian standard ABNT NBR 7190, Anexx B, totalizing 400 tests. Results of ANOVA revealed a significant reduction (16% on average) for mechanical properties wood due to the increase in moisture content from 12% to over 30% (fiber saturation). The same behavior also occurred when assembly containing the two species was considered.


2018 ◽  
Vol 162 ◽  
pp. 02014
Author(s):  
Mazin Abdulrahman ◽  
Alyaa Al-Attar ◽  
Marwa Ahmad

Reactive Powder Concrete (RPC) is an ultra-high performance concrete which has superior mechanical and physical properties, and composed of cement and very fine powders such as quartz sand and silica fume with very low water/ binder ratio and Superplasticizer. Heat treatment is a well-known method that can further improve the performance of (RPC). The current research including an experimental study of the effect of different curing conditions on mechanical properties of reactive powder concrete (compressive strength, modulus of rupture and splitting tensile strength), the curing conditions includes three type of curing; immersion in water at temperature of 35 OC (which is considered as the reference-curing situation), immersion in water at temperature of 90 OC for 5 hours daily and curing with hot steam for 5 hours daily) until 28 days according to ASTM C684-99 [8]. This research includes also the study of effect of adding silica fume as percentage of cement weight on mechanical properties of reactive powder concrete for different percentage ratios (5%,10% and 15%). Super plasticizer is also used with ratio of (1.8%) by weight of cementitious material; constant water cement ratio (0.24) was used for all mixes. For each reactive concrete mix, it has been cast into a cubes of (150*150*150) (to conduct the compression test), a cylinders of 150mm diameter with 300mm height (to conduct split test) and prisms of (500*100*100)mm to conduct the modulus of rupture test. The results showed that the best method of curing (according to its enhancing the RPC mechanical properties) is the method of immersion in hot water at temperature 90 OC for the all silica fume percentages, and the best used silica fume percentage was (10%) for the all used curing methods.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 7009-7017
Author(s):  
Liqiang Zhang ◽  
Zhizhong Long ◽  
Zhili Tan ◽  
Qingding Wu

Warm compaction technology is an eco-friendly method to improve the added value of poplar. In this work, the wood powder was compacted in the mold between 120 °C to 200 °C, at 80 MPa for 30 min. The color change, chemical properties, and mechanical properties were evaluated. The color of the formed compaction darkened uniformly. The CIE lightness color coordinate (L*) and chroma coordinates a* and b* decreased with the increase of forming temperature. Fourier infrared spectral analysis showed degradation of carbohydrates, along with the formation of a new chemical structure of darker color. Mechanical properties including modulus of rupture (MOR) and modulus of elasticity (MOE) of compacted wood increased initially and then decreased. These results provide a reference for the surface color control of thermally forming materials.


2019 ◽  
Vol 106 ◽  
pp. 9-15
Author(s):  
ANETA GUMOWSKA ◽  
GRZEGORZ KOWALUK

Bonding of birch solid wood of sawmill surface roughness with use of selected thermoplastic biopolymers. The aim of the research was to determine the shear strength and in-wood damage share of the birch lamellas of the surface shaped by rotary saw cutting and bonded with use of selected thermoplastic biopolymers, like polylactide (PLA) and polycaprolactone (PCL), as well as with use of polypropylene (PP) as a reference bonding material. The results show that the highest mechanical properties have been achieved in case of PLA used as a binder.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012001
Author(s):  
K C Liew ◽  
A R Samin

Abstract The purpose of this study was to evaluate the mechanical properties of particleboards made from Acacia mangium wood particles binded with three different types of seaweed-based adhesive. Red seaweed (RS), brown seaweed (BS) and green seaweed (GS) were used as the seaweed-based adhesives., while particleboard using urea formaldehyde (UF) adhesive was produced as control. Adhesives and wood particles were mixed and then undergone mat-forming, pre-pressing, hot-pressing and conditioning process. The test pieces for bending test (Modulus of Elasticity, MOE; Modulus of Rupture, MOR), and internal bonding strength (IB) were cut into size according to JIS A 5908: 2003. From mechanical properties results attained, for internal bonding strength test, all boards using RS, BS and GS adhesives were found to be significantly different at p≤0.05. Apart from that, RS adhesive showed highest MOE and MOR at 529.4259 N/mm2 and 1.7900 N/mm2, respectively. As a conclusion, the mechanical properties of particleboard using RS, BS, and GS adhesives showed RS stands out as the better adhesive among them which have significant effects on its strength.


PERENNIAL ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Apri Heri Iswanto ◽  
Zahrial Coto ◽  
Kurniawansyah Effendy

The objective of this research is to research the effect of particle soaking to physical and mechanical properties particleboard that resulted. The best result of particleboard is particleboard with treatment of hot water soaking. From this result obtained average of physical properties of particleboard (i.e. density, moisture content, water absorption, and thickness swelling) are 0.7 g/cm3; 9.58%; 52.27%; 10.05%. While the result average of mechanical properties of particleboard (i.e. Modulus of Rupture, Modulus of Elasticity, Internal Bond and Screw Holding Power) are 118.79 kg/cm2; 8.909 kg/cm2; 1.85 kg/cm2; 28.40 kg. Key words: Soaking, bagasse, particleboard, physical and mechanical properties References


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 572-582
Author(s):  
Lawrence Aguda ◽  
Babatunde Ajayi ◽  
Bisola Bakare ◽  
Yetunde Aguda ◽  
Kayode Olaoye ◽  
...  

The use of coconut husk sawdust and tomato stem particles at varying blending proportion was examined for the production of particle board. Boards of dimensions 350 mm by 350 mm by 6 mm were produced (coconut husk dust, tomato stem particles) at different blending proportion and addition of additive (CaCl2 at different concentrations). The physical properties (water absorption and thickness swelling) and mechanical properties (modulus of rupture (MOR) and modulus of elasticity (MOE)) were investigated. Thickness swelling and water absorption were investigated at 24 and 48 hours. The results showed that boards exhibited mean values of 0.50% to 4.16% and 2.12% to 7.00% respectively of thickness swelling at 24 hours and 48 hours respectively and 13.6% to 25.2% and 17.6% to 29.1% of water absorption at 24 h and 48 h, respectively. The boards also exhibited means of 1.00 N/mm2 to 5.25 N/mm2 and 339 N/mm2 to 3430 N/mm2 for MOR and MOE respectively. An increase in the tomato particle content caused increase in water absorption and thickness swelling, resulting in the highest water absorption and thickness swelling values. Tomato stem and coconut husk dust can be used to produce cement bonded boards after pre-treatment with hot water and preferably both sieved.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6550-6560
Author(s):  
Lawrence Aguda ◽  
Babatunde Ajayi ◽  
Sylvester Areghan ◽  
Yetunde Olayiwola ◽  
Aina Kehinde ◽  
...  

Declining availability of the prime economic species in the Nigerian timber market has led to the introduction of Lesser-Used Species (LUS) as alternatives. Their acceptability demands information on the technical properties of their wood. The aim of this study was to investigate the mechanical properties of Ficus vallis-choudae to determine its potential for timber. Three mature Ficus vallis-choudae trees were selected and harvested from a free forest area in Ibadan, Oyo State, Nigeria. Samples were collected from the base (10%), middle (50%), and top (90%) along the sampling heights of each tree, which was further partitioned into innerwood, centrewood, and outerwood across the sampling radial position. Investigations were carried out to determine the age, density, moisture content, impact strength, modulus of elasticity, modulus of rupture, compressive strength parallel-to-grain, and shear strength parallel-to-grain. The mean impact bending strength, modulus of rupture, modulus of elasticity, maximum shear strength parallel-to-grain, and maximum compression strength parallel-to-grain for Ficus vallis-choudae at 12% moisture content were 20.4 N/mm2, 85.8 N/mm2, 709 N/mm2, 10.7 N/mm2, and 33.6 N/mm2, respectively. The study found the species to be dense with high strength properties in comparison with well-known timbers used for constructional purposes.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 8309-8319
Author(s):  
Doan Van Duong ◽  
Masumi Hasegawa

Ultrasound was considered as a means for determining mechanical properties of clear wood in six different Acacia mangium provenances from a trial forest planted in Vietnam. A total of 30 trees (5 trees from each provenance) with no major defects were selected, and a 50-cm-long log was obtained at 1.3 m above the ground from each tree for the assessment of mechanical properties. The measured average ultrasound velocities for provenances tested in the longitudinal direction ranged from 4094 m/s to 4271 m/s. The predicted average dynamic modulus of elasticity (Ed) values varied from 7.42 GPa to 8.70 GPa among provenances. The Ed indicated significant positive correlation coefficients with modulus of elasticity (0.64 to 0.96), modulus of rupture (0.44 to 0.87), and compression strength (0.54 to 0.92) for provenances examined in this study. The results indicated that the use of ultrasound was feasible to determine the mechanical properties of A. mangium provenances planted in Vietnam.


Sign in / Sign up

Export Citation Format

Share Document