scholarly journals PENGARUH PERENDAMAN PARTIKEL TERHADAP SIFAT FISIS DAN MEKANIS PAPAN PARTIKEL DARI AMPAS TEBU (Saccharum officinarum)

PERENNIAL ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Apri Heri Iswanto ◽  
Zahrial Coto ◽  
Kurniawansyah Effendy

The objective of this research is to research the effect of particle soaking to physical and mechanical properties particleboard that resulted. The best result of particleboard is particleboard with treatment of hot water soaking. From this result obtained average of physical properties of particleboard (i.e. density, moisture content, water absorption, and thickness swelling) are 0.7 g/cm3; 9.58%; 52.27%; 10.05%. While the result average of mechanical properties of particleboard (i.e. Modulus of Rupture, Modulus of Elasticity, Internal Bond and Screw Holding Power) are 118.79 kg/cm2; 8.909 kg/cm2; 1.85 kg/cm2; 28.40 kg. Key words: Soaking, bagasse, particleboard, physical and mechanical properties References

2014 ◽  
Vol 1051 ◽  
pp. 273-277
Author(s):  
Chun Gui Du ◽  
Jian Gang Song

This paper presents a study on the different fire retardant treatment technologies influence on the physical and mechanical properties of bamboo particleboard. The results showed: the properties of bamboo particleboard would change with changing of fire retardant treatment technology; among them the treated technology of fire retardant spraying after resin blending had larger changed; compared with non-fire retardant bamboo particleboard, the density and moisture content (MC) and 2h thickness swell (2h TS) of fire retardant bamboo particleboard had a little improved, and their internal bond (IB) and modulus of rupture (MOR) and modulus of elasticity (MOE) had slightly reduced.


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mayang Archila ◽  
Farah Diba ◽  
Dina Setyawati ◽  
. Nurhaida

The objective of this research is to evaluate the effect of the number of composite layers on the quality of the composite board from sago bark waste and plastic waste, and the number of composite layers that produce the best quality on composite board. The composite board is made with size 30 cm x 30 cm x 1 cm. The composition and division of the material was carried out manually with the polypropylene distribution divided into three parts: the front and rear respectively of 15%, and the center 70% of the plastic weight. Target density of composite boards was 0.7 g / cm3. The treatment used is based on the number of layers composing, which is 5 layers, 7 layers, 9 layers, 11 layers and 13 layers. After mixed the sago bark particle and waste of polypropylene, the materials then compressed with hot press at 180oC with pressure about ± 25 kg / cm2 for 10 minutes. The composite boards then tested the quality included physical and mechanical properties. Testing of physical and mechanical properties refers to JIS A 5908-2003 standard. Physical properties consist of density, moisture content, thickness swelling, and water absorption. Mechanical properties consist of modulus of rupture, modulus of elasticity, internal bonding, and modulus of screw holding strength. The study used a completely randomized design experiment consisting of 5 treatments and 3 replications. The results showed the average value of composite density was range between 0.6962 – 0.7896 g/cm3, the moisture content was range between 4.3388 % - 6.8066%, the thickness swelling was range between 8.2605% - 11.9615%, and water absorption was range between 17.2380% - 22.3867%. The average value of modulus of rupture was range between 60,0632 kg/cm2 – 64,4068 kg/cm2, the modulus of elasticity was range between 17935,1813g/cm2 – 32841,8278 kg/cm2, the internal bonding was range between 1,9268 kg/cm2  - 5,4119 kg/cm2, and the modulus of screw holding strength was range between 78,2530 kg/cm2 – 92,9677 kg/cm2. The composite board made from sago stem bark waste and polypropylene waste plastic with 13 layers treatment is the best composite board and fulfilled the JIS A 5908-2003 standard. Keywords: bark of sago, composite boards, layer of composite, polypropylenes plastic, waste


2021 ◽  
Vol 891 (1) ◽  
pp. 012007
Author(s):  
Y S Hadi ◽  
E N Herliyana ◽  
I M Sulastiningsih ◽  
E Basri ◽  
R Pari ◽  
...  

Abstract Jabon (Anthocephalus cadamba) laminas were impregnated with polystyrene and reached 21.2% polymer loading. The laminas were manufactured for three-layer glued laminated timber (glulam) using isocyanate glue with glue spread 280 g/m2 and cold-press process. For comparison purposes, untreated glulam as control and also solid wood were prepared. The physical-mechanical properties were evaluated according to the Japanese Agricultural Standard (JAS) 234-2003. The results showed that the color of glulam was not different from polystyrene glulam. The density of polystyrene glulam was higher than untreated glulam and solid wood, but the moisture content was lower than the other. The product kinds of solid wood, untreated glulam, and polystyrene glulam did not affect shear strength and modulus of rupture (MOR), while the modulus of elasticity (MOE) of untreated glulam and hardness of polystyrene glulam were the highest values and the other products were not different one each other. Both kinds of glulam fulfilled the Japanese standard in terms of moisture content, MOR, and delamination in hot water, but MOE and shear strength did not. Regarding its advantages, polystyrene glulam could be further developed using a higher wood density.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9596-9610
Author(s):  
Yali Shao ◽  
Lili Li ◽  
Zhangjing Chen ◽  
Sunguo Wang ◽  
Ximing Wang

Poplar (Populus) wood was subjected in this work to thermo-hydro-mechanical treatment. The influence of the treatment parameters on the physical and mechanical properties were investigated. The wood samples were densified under three compression ratios (0%, 30%, and 50%), and thermally treated at three temperatures (180 °C, 200 °C, and 220 °C), at three thermal treatment durations (3 h, 4 h, and 5 h). The density, modulus of elasticity, modulus of rupture, radial hardness, and thickness swelling were measured. The results showed that the densities of the samples increased by 36.6% to 49.7%. As the compression rate increased, the temperature, duration, modulus of elasticity, modulus of rupture, and hardness increased. However, the dimensions of the densified samples were less stable. Compared to the densified samples, the maximum thickness swelling could be reduced by 74% (from 29.7% to 7.8%) when subjected to a thermal treatment at 220 °C for 3 h.


Author(s):  
Atoyebi Olumoyewa Dotun ◽  
Odeyemi Samson Olalekan ◽  
Azeez Lateef Olugbenga ◽  
Modupe Abayomi Emmanuel

This study considered the production of composite ceiling boards from both agricultural and industrial wastes. Boards with different blending proportions by weight of cement, corncob and sawdust (Cem:Ccb:Swd) were produced and tested. Physical and mechanical tests such as Water Absorption (WA), Thickness Swelling (TS), Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) were carried out on the products. The findings revealed that the board with Cem:Ccb:Swd blending proportion 50:10:40 gave the highest values of MOE and MOR and also had the lowest values of WA and TS. The MOE and MOR values of 3.432 are both higher than the minimum values of 550 N/mm2 and 3 N/mm2 specified for MOE and MOR respectively by the American National Standard Institute, for general-use particle boards. The cement content is inversely proportional to the physical properties and directly proportional to the mechanical properties.


2016 ◽  
Vol 8 (2) ◽  
pp. 43-52 ◽  
Author(s):  
Djoko Purwanto

Oil palm empty fruit bunches (OPEFB) fiber were industrial waste that has not been widely used by the community, only stacked and cause odors that interfere with the surrounding environment. This research studied the utilization of OPEFB fiber for cement board products using cement as resin and CaCl2 as accelerator. Laboratory scale cement board made from OPEFB fiber were mixed with cement, and CaCl2. The composition of fiber and cement were 1:1, 1:1.5, 1:2, and CaCl2 variations were 0%, 1% and 3%. A mixture of fibers, cement and CaCl2 was compressed at the pressure of 4 ton for 24 hours. The cement boards were tested for physical and mechanical properties according to JIS A 5417-1992, and the results were compared to the requirements of the cement board JIS A 5417-1992. Cement board made from fiber and cement composition 1:1.5 and CaCl2 content 3% produced moisture content, thickness swelling, water absorption, density, modulus of rupture/MOR, modulus of elasticity/MOE and screw withdrawal strength that met the requirement of JIS A 5417-1992. The composition of fiber and cement and the variations of CaCl2 content produced significant effect on water content, water absorption, thickness swelling, modulus of rupture/MOR, modulus of elasticity/MOE and screw withdrawal strength on cement boards.Keywords : oil palm empty fruit bunches fiber, cement boards, physical and mechanical properties


2014 ◽  
Vol 6 (1) ◽  
pp. 15 ◽  
Author(s):  
Budi Tri Cahyana

This research aimed to get the physical and mechanical properties of non adhesive-particle board from oil palm empty fruit bunches. The oil palm empty fruit bunches were degradated to fibre and boiled in boiling water during 60 minute then dried in ± 2 weeks. The dried raw material was chopped to be fibre in 5 mesh, 10 mesh, and 16 mesh. It were complied into a mold and then hot pressed in 35 kgf/cm2 pressure during 10 minute with 3 of temperature variety, 160°C, 180°C and 200°C. The result showed that the average of particle board water content was 7,11 -  9,85 % and the density was 0,63 – 0,76 gr/cm3. The highest thickness swelling was 22,59 % in 10 mesh and 160 0C (a2b1) temperature of oil palm empty fruit bunches. The modulus of rupture was 211,67 kg/cm2  in 10 mesh and 180 0C (a2b2) temperature. The modulus of elasticity was 490,85 kg/cm2 in 10 mesh and 160 0C (a2b1) temperature. The tensile strength was 7,49 kg/cm2 in 5 mesh and 200 0C (a1b3) temperature. The average of physical and mechanical properties such as water content, density, modulus of rupture, tensile strength were fulfill the SNI requirement, while the average of thickness swelling and modulus of elasticity were not fulfill the SNI requirement.Keywords: oil palm empty fruit bunches, particle board


2013 ◽  
Vol 631-632 ◽  
pp. 765-770
Author(s):  
Chuan Gui Wang ◽  
Shuan Gyan Zhang ◽  
Heng Wu

Cement bonded particleboards were manufactured form grapevine stalk particles. The physical and mechanical properties of the boards were assessed. Results revealed that the mixture of grapevine-cement for either treatment of particles, was graded as “low inhibition” when CaCl2 was incorporated, as determined by the hydration tests. Three factors namely grapevine-cement ratio, water-cement ratio and particle size were applied in this study for the board manufacturing. Increase in grapevine-cement ratio caused decrease in Modulus of rupture (MOR), Modulus of elasticity (MOE), Internal bond (IB), thermal conductivity and increase in Thickness swelling (TS). Increase in water-cement ratio caused decrease in MOR, MOE, IB, TS and thermal conductivity. The particle size resulted in little change in all, but TS. The MOR, MOE, IB of the boards were significantly affected by grapevine-cement and water-cement ratios except for TS. Only the effect of particle size on thermal conductivity is significant at 0.05 level significance.


2021 ◽  
Vol 6 (2) ◽  
pp. 57-61
Author(s):  
Mohamad Saiful Sulaiman ◽  
Sitti Fatimah Mhd. Ramle ◽  
Rokiah Hashim ◽  
Othman Sulaiman ◽  
Mohd Hazim Mohamad Amini ◽  
...  

Physical and mechanical properties of Bambusa vulgaris and Schizostachyum brachycladum wereinvestigated. The sample were classified into two different ages which are young and mature foreach culm of bamboo. The aim of this study to investigate the physical properties such as density,basic density, moisture content, water absorption and thickness swelling. Other than that, themechanical properties also help to determine their flexural test for modulus of rupture (MOR) andmodulus of elasticity (MOE). The method used to analyse physical and mechanical properties werefollowing the ISO standard. From this study, young Bambusa vulgaris has indicated the highercontent of moisture content, water absorption and thickness swelling with 67.66%, 2.69% and34.03%, respectively while mature Schizostachyum brachycladum has shown the higher value inbasic density, density, and flexural test for MOR and MOE with 876.33 kg/m3, 1084.49 kg/m3, 317.01 N/mm2 and 122986.18 N/mm2, respectively.


2018 ◽  
Vol 1 (1) ◽  
pp. 16-23
Author(s):  
Apri Heri Iswanto ◽  
Dita Sari Prabuningrum ◽  
Irawati Azhar ◽  
Supriyanto Supriyanto

The objective of this research was to evaluate the effect of length size particle on physical and mechanical properties of particleboard. Sorghum bagasse was cut into 3, 5, and 7 cm length size. Furthermore, particles were dried until reached of4% moisture content. Amount of 10% urea-formaldehyde (UF) resin used for binding. Hot pressing process conducted in 130C temperature for 10 minutes and 30 kg cm -2 pressure. The results showed that thickness swelling (TS) and internal bond (IB) did not fulfill of requirement of Japanese Industrial Standard (JIS) A 5908 (2003). According to all parameters, 3 cm length size of particle was resulting in the best properties.


Sign in / Sign up

Export Citation Format

Share Document