scholarly journals The Spatially Inhomogeneous Influence of Snow on the Radial Growth of Schrenk Spruce (Picea schrenkiana Fisch. et Mey.) in the Ili-Balkhash Basin, Central Asia

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 44
Author(s):  
Li Qin ◽  
Kainar Bolatov ◽  
Yujiang Yuan ◽  
Huaming Shang ◽  
Shulong Yu ◽  
...  

Snow has an important impact on forest ecosystems in mountainous areas. In this study, we developed 14 tree-ring-width chronologies of Schrenk spruce (Picea schrenkiana Fisch. et Mey.) for the Ili-Balkhash Basin (IBB), Central Asia. We analyzed the response of radial growth to temperature, precipitation and snow parameters. The results show that previous winter and current summer precipitation have an important influence on the radial growth of P. schrenkiana. Further, we find spatially inhomogeneous effects of snow on subsequent growing-season tree growth in IBB. The radial growth response of P. schrenkiana to snow shows a weak–strong–weak trend from west to east across the Ili-Balkhash Basin. This spatial difference is mainly related to precipitation, as snow has little effect on tree growth in regions that receive more precipitation. Thus, winter snow has an important influence on the radial growth of trees in regions that receive limited amounts of precipitation.

2014 ◽  
Vol 32 (3) ◽  
pp. 230-236 ◽  
Author(s):  
Tongwen Zhang ◽  
Yujiang Yuan ◽  
Qing He ◽  
Wenshou Wei ◽  
Mamatkanov Diushen ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1602
Author(s):  
Xiaoxia Huang ◽  
Xiaoneng Sun ◽  
Yuan Jiang ◽  
Feng Xue ◽  
Minghao Cui ◽  
...  

Transitional climate zones (TCZ) are characterized by instability due to rapid changes in climate and biological variables, and trees growing there are particularly sensitive to climate change. Therefore, knowledge about the shifted relationships of tree growth in response to climate warming will shape regional forest conservation and management strategies. China has experienced rapid warming in recent decades. However, how tree growth in semihumid to semiarid regions, such as the Guandi Mountains, responds to more sophisticated changes in the hydrothermal combination is not yet clear. In this study, we used tree-ring width data from three sites along an elevational gradient in the Guandi Mountains to present the response of Picea wilsonii Mast. radial growth to increasing temperature and elevational differences in the relationship between tree growth and climate. The results indicated that the Guandi Mountains have experienced rapid warming with a clear trend toward aridity. From 1959 to 1995, the radial growth of P. wilsonii was mainly influenced by temperature, while it was controlled by both temperature and precipitation after rapid warming in 1996. From 1959 to 2017, this species showed a generally consistent growth–climate relationship at different elevations in the Guandi Mountains. However, the radial growth of trees at higher elevations had a higher climatic correlation than at lower elevations, and it was more conditioned by higher summer temperatures and precipitation in December of the previous year. These results suggested that P. wilsonii was more susceptible to drought and high temperatures due to a warming climate and that more attention should be devoted to forest management, especially the adverse consequences of summer drought on P. wilsonii.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 473 ◽  
Author(s):  
Zhang ◽  
Zhang ◽  
Jiang ◽  
Bagila ◽  
Ainur ◽  
...  

The divergence problem, which manifests as an unstable response relationship between tree-ring growth and climatic factors under the background of global warming, poses a challenge to both the traditional theory of dendroclimatology and the reliability of climatic reconstructions based on tree-ring data. Although Schrenk spruce, as the dominant tree species in the Tianshan Mountains, is frequently applied in the dendrochronological studies, the understanding of the divergence problem of this tree species is still limited. This study conducted correlation analysis between climatic factors and tree-ring width chronologies from 51 living and healthy specimens of Schrenk spruce at sites of high and low elevation in the Alatau Mountains to determine the stability of the response. The results revealed that the tree-ring width of the spruce specimens was correlated positively with precipitation and correlated negatively with temperature. Although the variations of the two tree-ring chronologies were similar, the radial growth of the spruce at the low elevation was found more sensitive to climatic factors. Furthermore, the sensitivity of tree growth to climate demonstrated an obvious increase after an abrupt change of climate under the background of the recent warming and wetting trend. Increased drought stress, calculated based on climatic data, was regarded as the main reason for this phenomenon. The results supply the gap of the stability of climatic response of tree growth in Central Asia to some extent.


2018 ◽  
Vol 91 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Magdalena Opała-Owczarek ◽  
Tadeusz Niedźwiedź

AbstractWe developed a 1108 yr chronology of tree-ring widths, based on 64 Himalayan pencil juniper (Juniperus semiglobosa Regel) trees, for the Pamir-Alay Mountains, central Asia. Dendroclimatological analysis demonstrates that precipitation has significant effects on tree growth in the semiarid mountainous area of northwestern Tajikistan located on the edge of the great midlatitude Karakum and Kyzylkum deserts. The highest level of linear correlation (r=0.67) is observed between tree growth and seasonalised winter (previous December–February) precipitation. Our studies also show that moisture (precipitation/Palmer Drought Severity Index) from the previous June to the current September was the dominant climatic factor accounting for interannual variations in tree-ring width, suggesting that this should be considered in climate reconstruction. Using the transfer function method, we reconstructed the region’s drought history over the period AD 908–2015. The results of this moisture reconstruction showed that the most recent millennium was characterised by series of dry and wet stages. The driest periods occurred before 1000, 1200–1250, and at the end of the eighteenth century and beginning of the nineteenth century. The wettest conditions existed in 1650–1700 and after 1990.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 514 ◽  
Author(s):  
Wuji Zheng ◽  
Xiaohua Gou ◽  
Jiajia Su ◽  
Haowen Fan ◽  
Ailing Yu ◽  
...  

Research Highlights: We compared annually resolved records of tree-ring width and stable isotope of dead and surviving Fokienia hodginsii (Dunn) Henry et Thomas trees. We provide new insights into the relationships and sensitivity of tree growth to past and current climate, and explored the underlying mechanism of drought-induced mortality in F. hodginsii. Background and Objectives: Drought-induced tree decline and mortality are increasing in many regions around the world. Despite the high number of studies that have explored drought-induced decline, species-specific responses to drought still makes it difficult to apply general responses to specific species. The endangered conifer species, Fokienia hodginsii, has experienced multiple drought-induced mortality events in recent years. Our objective was to investigate the historical and current responses to drought of this species. Materials and Methods: We used annually resolved ring-width and δ13C chronologies to investigate tree growth and stand physiological responses to climate change and elevated CO2 concentration (Ca) in both dead and living trees between 1960 and 2015. Leaf intercellular CO2 concentration (Ci), Ci/Ca and intrinsic water-use efficiency (iWUE) were derived from δ13C. Results: δ13C were positively correlated with mean vapor pressure deficit and PDSI from previous October to current May, while ring widths were more sensitive to climatic conditions from previous June to September. Moreover, the relationships between iWUE, basal area increment (BAI), and Ci/Ca changed over time. From 1960s to early 1980s, BAI and iWUE maintained a constant relationship with increasing atmospheric CO2 concentration. After the mid-1980s, we observed a decrease in tree growth, increase in the frequency of missing rings, and an unprecedented increase in sensitivity of 13C and radial growth to drought, likely related to increasingly dry conditions. Conclusions: We show that the recent increase in water stress is likely the main trigger for the unprecedented decline in radial growth and spike in mortality of F. hodginsii, which may have resulted from diminished carbon fixation and water availability. Given that the drought severity and frequency in the region is expected to increase in the future, our results call for effective mitigation strategies to maintain this endangered tree species.


2021 ◽  
Vol 4 ◽  
Author(s):  
Shunsuke Tei ◽  
Ayumi Kotani ◽  
Atsuko Sugimoto ◽  
Nagai Shin

Terrestrial forest ecosystems are crucial to the global carbon cycle and climate system; however, these ecosystems have experienced significant warming rates in recent decades, whose impact remains uncertain. This study investigated radial tree growth using the tree-ring width index (RWI) for forest ecosystems throughout the Northern Hemisphere to determine tree growth responses to autumn climate change, a season which remains considerably understudied compared to spring and summer, using response function and random forest machine learning methods. Results showed that autumn climate conditions significantly impact the RWI throughout the Northern Hemisphere. Spatial variations in the RWI response were influenced by geography (latitude, longitude, and elevation), climatology, and biology (tree genera); however, geographical and/or climatological characteristics explained more of the response compared to biological characteristics. Higher autumn temperatures tended to negatively impact tree radial growth south of 40° N in regions of western Asia, southern Europe, United State of America and Mexico, which was similar to the summer temperature response found in previous studies, which was attributed to temperature-induced water stress.


Forests ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 761 ◽  
Author(s):  
Mizanur Rahman ◽  
Mahmuda Islam ◽  
Jakob Wernicke ◽  
Achim Bräuning

Tree growth in the tropics is strongly influenced by climate. However, reported tree growth responses to climate are largely inconsistent, varying with geographic location, forest type, and tree species. It is thus important to study the growth responses of tropical trees in sites and species that are under-represented so far. Bangladesh, a country influenced by the Asian monsoon climate, is understudied in terms of tree growth response to climate. In the present study, we developed a 121-year-long regional ring-width index chronology of Chukrasia tabularis A. Juss. sampled in two moist forest sites in Bangladesh to investigate tree growth responses to climate in monsoon South Asia. Standard dendrochronological methods were used to produce the ring-width chronologies. The climate sensitivity of C. tabularis was assessed through bootstrap correlation analysis and the stationarity and consistency of climate–growth relationships was evaluated using moving correlation functions and comparing the regression slopes of two sub-periods (1950–1985 and 1986–2015). Tree growth was negatively correlated with the mean, minimum, and maximum temperatures, particularly during the early growing season (March). Likewise, precipitation negatively influenced tree growth in the later growing season (October). Besides, radial growth of Chukrasia sharply ceased in years following strong and moderate El Niño events. In parallel with a significant positive trend in local temperatures, tree growth sensitivity to early growing season (March–April) mean temperatures and July minimum temperatures increased in recent decades. Tree growth sensitivity to October precipitation and April vapor pressure deficit also increased. Overall, climate–growth relationships were stronger during the period 1986–2015 than during 1950–1985. Changes in climate sensitivity might be linked to a warming trend that induced an increase in the dry season length during recent decades. With a further predicted temperature increase at our study sites, our results suggest that radial growth of C. tabularis will further decline in response to climate warming.


2015 ◽  
Vol 24 (1) ◽  
pp. 3-13 ◽  
Author(s):  
D. K. Kharal ◽  
H. Meilby ◽  
S. Rayamajhi ◽  
D. Bhuju ◽  
U. K. Thapa

In mountainous areas including the Himalayas, tree lines are expected to advance to higher altitudes due to global climate change affecting the distribution and growth of plant species. This study aimed at identifying the tree ring variability of Abies spectabilis (D. Don) and its response to the climate along an elevation gradient in the high Himalayas of central Nepal. Tree core samples were collected from four sites in Mustang district. All sites were located in the same valley and exposed to similar weather conditions. Out of 232 samples collected from the sites, Titi lower (2700 m), Titi upper (2900 m), Pangukhark (3100 m) and Lete upper (3300 m), 44, 40, 39 and 41 series were successfully cross-dated and ring-width chronologies including 168, 79, 138 and 156 years previous to 2012 were developed, respectively. Statistically significant differences in average annual radial growth were noted among the four sites with the highest radial growth observed at mid-elevation sites. Chronological statistics based on residual chronologies for the common period revealed that A. spectabilis at the upper elevation site was more climate sensitive than at the other three sites. At the highest-elevation sites the correlation between pre-monsoon precipitation and tree growth was positive, and for the month of May this was statistically significant (p<0.05). Moreover, spring temperature (March-June) was negatively correlated with precipitation and with tree growth at all sites, and at the upper elevation site (3300 m) the correlation was significant for March, April and May.  Banko Janakari, Vol. 24, No. 1 pp. 3-13


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 223 ◽  
Author(s):  
Ruibo Zhang ◽  
Bakytbek Ermenbaev ◽  
Tongwen Zhang ◽  
Mamtimin Ali ◽  
Li Qin ◽  
...  

The Chu River is one of the most important rivers in arid Central Asia. Its discharge is affected by climate change. Here, we establish a tree-ring chronology for the upper Chu River Basin and analyze the relationships between radial growth, climate, and discharge. The results show that the radial growth of Schrenk spruce (Picea schrenkiana Fisch. et Mey.) is controlled by moisture. We also reconstruct a 175-year standardized precipitation-evapotranspiration index (SPEI) for the Chu River Basin. A comparison of the reconstructed and observed indices reveal that 39.5% of the variance occurred during the calibration period of 1952–2014. The SPEI reconstruction and discharge variability of the Chu River show consistent long-term change. They also show that the Chu River Basin became increasingly dry between the 1840s and the 1960s, with a significant drought during the 1970s. A long and rapid wetting period occurred between the 1970s and the 2000s, and was followed by increasing drought since 2004. The change in the SPEI in the Chu River Basin is consistent with records of long-term precipitation, SPEI and Palmer Drought Severity Indices (PDSI) in other proximate regions of the western Tianshan Mountains. The hydroclimatic change of the Chu River Basin may be associated with westerly wind. This study is helpful for disaster prevention and water resource management in arid central Asia.


2015 ◽  
Vol 12 (6) ◽  
pp. 4769-4800
Author(s):  
G. Li ◽  
S. P. Harrison ◽  
I. C. Prentice

Abstract. We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris columellaris in the semi-arid Great Western Woodlands, Western Australia, over the past 100 years. Parameter values were derived from independent observations except for sapwood specific respiration rate, fine-root turnover time, fine-root specific respiration rate and the ratio of fine-root mass to foliage area, which were estimated by Bayesian optimization. The model reproduced the general pattern of interannual variability in radial growth (tree-ring width), including the response to the shift in precipitation regimes that occurred in the 1960s. Simulated and observed responses to climate were consistent. Both showed a significant positive response of tree-ring width to total photosynthetically active radiation received and to the ratio of modeled actual to equilibrium evapotranspiration, and a significant negative response to vapour pressure deficit. However, the simulations showed an enhancement of radial growth in response to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades that is not present in the observations. The discrepancy disappeared when the model was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to foliage area increases by 14% (from 0.127 to 0.144 kg C m-2) as [CO2] increased while the other three estimated parameters remained constant. The absence of a signal of increasing [CO2] has been noted in many tree-ring records, despite the enhancement of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our simulations suggest that this behaviour could be explained as a consequence of a shift towards below-ground carbon allocation.


Sign in / Sign up

Export Citation Format

Share Document