scholarly journals Optimizing Conservation Strategies for a Threatened Tree Species: In Situ Conservation of White Ash (Fraxinus americana L.) Genetic Diversity through Insecticide Treatment

Forests ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 202 ◽  
Author(s):  
Charles Flower ◽  
Jeremie Fant ◽  
Sean Hoban ◽  
Kathleen Knight ◽  
Laura Steger ◽  
...  
2015 ◽  
Author(s):  
Julio Peñas ◽  
Sara Barrios ◽  
Javier Bobo-Pinilla ◽  
Juan Lorite ◽  
M. Montserrat Martínez-Ortega

Astragalus edulis (Fabaceae) is an endangered annual species from western Mediterranean region that colonized SE Iberian Peninsula, NE and SW Morocco, and the easternmost Macaronesian islands (Lanzarote and Fuerteventura). Although in Spain some conservation measures have been adopted, it is still necessary to develop an appropriate management plan to preserve genetic diversity across the entire distribution area of the species. Our main objective was to use population genetics as well as ecological and phylogeographic data to select Relevant Genetic Units for Conservation (RGUCs) as the first step in designing conservation plans for A. edulis. We identified six RGUCs for in situ conservation, based on estimations of population genetic structure and probabilities of the loss of rare alleles. Additionally, further population parameters, i.e. occupation area, population size, vulnerability, legal status of the population areas, and the historical haplotype distribution, were considered in order to establish which populations deserve conservation priority. Three populations from the Iberian Peninsula, two from Morocco, and one from the Canary Islands represent the total genetic diversity of the species and the rarest allelic variation. Ex situ conservation is recommended to complement the preservation of A. edulis, given that effective in situ population protection is not feasible in all cases. The consideration of complementary phylogeographic and ecological data is useful for management efforts to preserve the evolutionary potential of the species.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1474 ◽  
Author(s):  
Julio Peñas ◽  
Sara Barrios ◽  
Javier Bobo-Pinilla ◽  
Juan Lorite ◽  
M. Montserrat Martínez-Ortega

Astragalus edulis(Fabaceae) is an endangered annual species from the western Mediterranean region that colonized the SE Iberian Peninsula, NE and SW Morocco, and the easternmost Macaronesian islands (Lanzarote and Fuerteventura). Although in Spain some conservation measures have been adopted, it is still necessary to develop an appropriate management plan to preserve genetic diversity across the entire distribution area of the species. Our main objective was to use population genetics as well as ecological and phylogeographic data to select Relevant Genetic Units for Conservation (RGUCs) as the first step in designing conservation plans forA. edulis. We identified six RGUCs for in situ conservation, based on estimations of population genetic structure and probabilities of loss of rare alleles. Additionally, further population parameters, i.e. occupation area, population size, vulnerability, legal status of the population areas, and the historical haplotype distribution, were considered in order to establish which populations deserve conservation priority. Three populations from the Iberian Peninsula, two from Morocco, and one from the Canary Islands represent the total genetic diversity of the species and the rarest allelic variation. Ex situ conservation is recommended to complement the preservation ofA. edulis, given that effective in situ population protection is not feasible in all cases. The consideration of complementary phylogeographic and ecological data is useful for management efforts to preserve the evolutionary potential of the species.


Heredity ◽  
2021 ◽  
Author(s):  
Francis Denisse McLean-Rodríguez ◽  
Denise Elston Costich ◽  
Tania Carolina Camacho-Villa ◽  
Mario Enrico Pè ◽  
Matteo Dell’Acqua

AbstractGenomics-based, longitudinal comparisons between ex situ and in situ agrobiodiversity conservation strategies can contribute to a better understanding of their underlying effects. However, landrace designations, ambiguous common names, and gaps in sampling information complicate the identification of matching ex situ and in situ seed lots. Here we report a 50-year longitudinal comparison of the genetic diversity of a set of 13 accessions from the state of Morelos, Mexico, conserved ex situ since 1967 and retrieved in situ from the same donor families in 2017. We interviewed farmer families who donated in situ landraces to understand their germplasm selection criteria. Samples were genotyped by sequencing, producing 74,739 SNPs. Comparing the two sample groups, we show that ex situ and in situ genome-wide diversity was similar. In situ samples had 3.1% fewer SNPs and lower pairwise genetic distances (Fst 0.008–0.113) than ex situ samples (Fst 0.031–0.128), but displayed the same heterozygosity. Despite genome-wide similarities across samples, we could identify several loci under selection when comparing in situ and ex situ seed lots, suggesting ongoing evolution in farmer fields. Eight loci in chromosomes 3, 5, 6, and 10 showed evidence of selection in situ that could be related with farmers’ selection criteria surveyed with focus groups and interviews at the sampling site in 2017, including wider kernels and larger ear size. Our results have implications for ex situ collection resampling strategies and the in situ conservation of threatened landraces.


2015 ◽  
Author(s):  
Julio Peñas ◽  
Sara Barrios ◽  
Javier Bobo-Pinilla ◽  
Juan Lorite ◽  
M. Montserrat Martínez-Ortega

Astragalus edulis (Fabaceae) is an endangered annual species from western Mediterranean region that colonized SE Iberian Peninsula, NE and SW Morocco, and the easternmost Macaronesian islands (Lanzarote and Fuerteventura). Although in Spain some conservation measures have been adopted, it is still necessary to develop an appropriate management plan to preserve genetic diversity across the entire distribution area of the species. Our main objective was to use population genetics as well as ecological and phylogeographic data to select Relevant Genetic Units for Conservation (RGUCs) as the first step in designing conservation plans for A. edulis. We identified six RGUCs for in situ conservation, based on estimations of population genetic structure and probabilities of the loss of rare alleles. Additionally, further population parameters, i.e. occupation area, population size, vulnerability, legal status of the population areas, and the historical haplotype distribution, were considered in order to establish which populations deserve conservation priority. Three populations from the Iberian Peninsula, two from Morocco, and one from the Canary Islands represent the total genetic diversity of the species and the rarest allelic variation. Ex situ conservation is recommended to complement the preservation of A. edulis, given that effective in situ population protection is not feasible in all cases. The consideration of complementary phylogeographic and ecological data is useful for management efforts to preserve the evolutionary potential of the species.


AGROFOR ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Agnese GAILĪTE ◽  
Anita GAILE ◽  
Dainis RUŅĢIS

Plants and berries of bilberries (Vaccinium myrtillus L.) are traditionally used in many nations as a local medicine as well as edible plants. They are an important feed source for wild animals and birds. In situ conservation is an important component for the conservation of crop wild relatives (CWR) and wild harvested plants (WHP). Research on population structure and genetic diversity is important and is required for the development and implementation of in situ conservation strategies as well as being useful for ecosystem services management. The aim of this study was to test EST-SSR markers for bilberry genotyping and determine genetic diversity in different forest types – Vacciniosa, Myrtillosa, Hylocomiosa as well as compare populations from various regions of Latvia. Our results indicated that there was a small genetic differentiation between bilberries grown in different forest types (0-2%); most of the variation was found within individuals. Analysing populations in different regions of Latvia, 5% of the genetic variation was found among populations. Analysis using the STRUCTURE software package showed that there were no isolated populations or distinct groups. There was a positive correlation between geographic and genetic distances, indicating that the analysed populations differentiation can be explained by isolation-by-distance, without additional dispersal barriers.


2018 ◽  
Vol 151 (1) ◽  
pp. 48-60
Author(s):  
Mi Yoon Chung ◽  
Hoa Thi Quynh Le ◽  
Sungwon Son ◽  
Huai Zhen Tian ◽  
Myong Gi Chung

Background and aims – Since historical events often leave an indelible mark on levels of genetic diversity of plant populations, one may indirectly infer their evolutionary history with the help of current patterns of genetic diversity. The terrestrial orchid Habenaria dentata, an element of warm-temperate/subtropical vegetation, reaches its northernmost limits in the Korean Peninsula, and thus it is extremely rare there. As H. dentata was absent from the Peninsula during the Last Glacial Maximum (LGM), it is likely to be of post-glacial origin having arrived from either a single refugium or multiple refugia. However, its rare, temperate/boreal congener H. linearifolia might have persisted in situ in either macrorefugia or microrefugia on the Peninsula during the LGM.Methods – To test which hypothesis is most appropriate for each species, we investigated levels of allozyme-based (17 loci) genetic diversity and population genetic structure in the two only known populations of H. dentata and in 12 populations of H. linearifolia.Key results – No allozyme diversity was found in H. dentata (He = 0.000), whereas H. linearifolia exhibited low within-population variation (He = 0.060) and high among-population differentiation (FST = 0.237). We found little association between populations in relation to their geographic location; several populations presented individuals belonging to different clusters.Conclusions – Our results suggest that H. dentata likely originated from a single ancestral population (perhaps from southern Japan or southern China) through post-glacial dispersal, whereas H. linearifolia probably survived the LGM in situ in microrefugia situated at low to mid-elevated regions. We further suggest that separate conservation strategies for each species should be employed, given that the two taxa have different ecological and demographic traits and harbour different levels of genetic diversity.


2020 ◽  
Vol 21 (20) ◽  
pp. 7459
Author(s):  
María Elena González-Benito ◽  
Miguel Ángel Ibáñez ◽  
Michela Pirredda ◽  
Sara Mira ◽  
Carmen Martín

Epigenetic variation, and particularly DNA methylation, is involved in plasticity and responses to changes in the environment. Conservation biology studies have focused on the measurement of this variation to establish demographic parameters, diversity levels and population structure to design the appropriate conservation strategies. However, in ex situ conservation approaches, the main objective is to guarantee the characteristics of the conserved material (phenotype and epi-genetic). We review the use of the Methylation Sensitive Amplified Polymorphism (MSAP) technique to detect changes in the DNA methylation patterns of plant material conserved by the main ex situ plant conservation methods: seed banks, in vitro slow growth and cryopreservation. Comparison of DNA methylation patterns before and after conservation is a useful tool to check the fidelity of the regenerated plants, and, at the same time, may be related with other genetic variations that might appear during the conservation process (i.e., somaclonal variation). Analyses of MSAP profiles can be useful in the management of ex situ plant conservation but differs in the approach used in the in situ conservation. Likewise, an easy-to-use methodology is necessary for a rapid interpretation of data, in order to be readily implemented by conservation managers.


2019 ◽  
Vol 52 (3) ◽  
pp. 1055-1064
Author(s):  
Hilaire S. S. Worogo ◽  
Rachidi Idrissou ◽  
Alassan S. Assani ◽  
Josias S. Adjassin ◽  
Maximilien Azalou ◽  
...  

Botany ◽  
2013 ◽  
Vol 91 (10) ◽  
pp. 653-661 ◽  
Author(s):  
Anochar Kaewwongwal ◽  
Arunee Jetsadu ◽  
Prakit Somta ◽  
Sompong Chankaew ◽  
Peerasak Srinives

The objective of this research was to determine the genetic diversity and population structure of natural populations of two rare wild species of Asian Vigna (Phaseoleae, Fabaceae), Vigna exilis Tateishi & Maxted and Vigna grandiflora (Prain) Tateishi & Maxted, from Thailand. Employing 21 simple sequence repeat markers, 107 and 85 individuals from seven and five natural populations of V. exilis and V. grandiflora, respectively, were analyzed. In total, the markers detected 196 alleles for V. exilis and 219 alleles for V. grandiflora. Vigna exilis populations showed lower average values in number of alleles, allelic richness, observed heterozygosity, gene diversity, and outcrossing rate than V. grandiflora populations, namely 58.00% versus 114.60%, 51.96% versus 74.80%, 0.02% versus 0.18%, 0.40% versus 0.66%, and 3.24% versus 17.41%, respectively. Pairwise FST among populations demonstrated that V. exilis was much more differentiated than V. grandiflora. Analysis of molecular variance revealed that 41.83% and 15.06% of total variation resided among the populations of V. exilis and V. grandiflora, respectively. Seven and two genetic clusters were detected for V. grandiflora and V. exilis by STRUCTURE analysis. Our findings suggest that different strategies are required for in situ conservation of the two species. All V. exilis populations, or as many as possible, should be conserved to protect genetic resources of this species, while a few V. grandiflora populations can capture the majority of its genetic variation.


2011 ◽  
Vol 9 (3) ◽  
pp. 411-422 ◽  
Author(s):  
M. R. Ahuja

This study reviews the various conservation strategies applied to the four redwood species, namely coast redwood (Sequoia sempervirens), Sierra redwood or giant sequoia (Sequoiadendron giganteum), dawn redwood (Metasequoia glyptostroboides) and South American redwood or alerce (Fitzroya cupressoides), which are endemic in the USA, China and South America, respectively. All four redwood genera belong to the family Cupressaceae; they are monospecific, share a number of common phenotypic traits, including red wood, and are threatened in their native ranges due to human activity and a changing climate. Therefore, the management objective should be to conserve representative populations of the native species with as much genetic diversity as possible for their future survival. Those representative populations exhibiting relatively high levels of genetic diversity should be selected for germplasm preservation and monitored during the conservation phase by using molecular markers. In situ and ex situ strategies for the preservation of germplasm of the redwoods are discussed in this study. A holistic in situ gene conservation strategy calls for the regeneration of a large number of diverse redwood genotypes that exhibit adequate levels of neutral and adaptive genetic variability, by generative and vegetative methods for their preservation and maintenance in their endemic locations. At the same time, it would be desirable to conserve the redwoods in new ex situ reserves, away from their endemic locations with similar as well as different environmental conditions for testing their growth and survival capacities. In addition, other ex situ strategies involving biotechnological approaches for preservation of seeds, tissues, pollen and DNA in genebanks should also be fully exploited in the face of global climate change.


Sign in / Sign up

Export Citation Format

Share Document