Genetic diversity of the extremely rare Habenaria dentata and the rare Habenaria linearifolia (Orchidaceae) in South Korea: implications for population history and conservation

2018 ◽  
Vol 151 (1) ◽  
pp. 48-60
Author(s):  
Mi Yoon Chung ◽  
Hoa Thi Quynh Le ◽  
Sungwon Son ◽  
Huai Zhen Tian ◽  
Myong Gi Chung

Background and aims – Since historical events often leave an indelible mark on levels of genetic diversity of plant populations, one may indirectly infer their evolutionary history with the help of current patterns of genetic diversity. The terrestrial orchid Habenaria dentata, an element of warm-temperate/subtropical vegetation, reaches its northernmost limits in the Korean Peninsula, and thus it is extremely rare there. As H. dentata was absent from the Peninsula during the Last Glacial Maximum (LGM), it is likely to be of post-glacial origin having arrived from either a single refugium or multiple refugia. However, its rare, temperate/boreal congener H. linearifolia might have persisted in situ in either macrorefugia or microrefugia on the Peninsula during the LGM.Methods – To test which hypothesis is most appropriate for each species, we investigated levels of allozyme-based (17 loci) genetic diversity and population genetic structure in the two only known populations of H. dentata and in 12 populations of H. linearifolia.Key results – No allozyme diversity was found in H. dentata (He = 0.000), whereas H. linearifolia exhibited low within-population variation (He = 0.060) and high among-population differentiation (FST = 0.237). We found little association between populations in relation to their geographic location; several populations presented individuals belonging to different clusters.Conclusions – Our results suggest that H. dentata likely originated from a single ancestral population (perhaps from southern Japan or southern China) through post-glacial dispersal, whereas H. linearifolia probably survived the LGM in situ in microrefugia situated at low to mid-elevated regions. We further suggest that separate conservation strategies for each species should be employed, given that the two taxa have different ecological and demographic traits and harbour different levels of genetic diversity.

2011 ◽  
Vol 9 (3) ◽  
pp. 411-422 ◽  
Author(s):  
M. R. Ahuja

This study reviews the various conservation strategies applied to the four redwood species, namely coast redwood (Sequoia sempervirens), Sierra redwood or giant sequoia (Sequoiadendron giganteum), dawn redwood (Metasequoia glyptostroboides) and South American redwood or alerce (Fitzroya cupressoides), which are endemic in the USA, China and South America, respectively. All four redwood genera belong to the family Cupressaceae; they are monospecific, share a number of common phenotypic traits, including red wood, and are threatened in their native ranges due to human activity and a changing climate. Therefore, the management objective should be to conserve representative populations of the native species with as much genetic diversity as possible for their future survival. Those representative populations exhibiting relatively high levels of genetic diversity should be selected for germplasm preservation and monitored during the conservation phase by using molecular markers. In situ and ex situ strategies for the preservation of germplasm of the redwoods are discussed in this study. A holistic in situ gene conservation strategy calls for the regeneration of a large number of diverse redwood genotypes that exhibit adequate levels of neutral and adaptive genetic variability, by generative and vegetative methods for their preservation and maintenance in their endemic locations. At the same time, it would be desirable to conserve the redwoods in new ex situ reserves, away from their endemic locations with similar as well as different environmental conditions for testing their growth and survival capacities. In addition, other ex situ strategies involving biotechnological approaches for preservation of seeds, tissues, pollen and DNA in genebanks should also be fully exploited in the face of global climate change.


2015 ◽  
Author(s):  
Julio Peñas ◽  
Sara Barrios ◽  
Javier Bobo-Pinilla ◽  
Juan Lorite ◽  
M. Montserrat Martínez-Ortega

Astragalus edulis (Fabaceae) is an endangered annual species from western Mediterranean region that colonized SE Iberian Peninsula, NE and SW Morocco, and the easternmost Macaronesian islands (Lanzarote and Fuerteventura). Although in Spain some conservation measures have been adopted, it is still necessary to develop an appropriate management plan to preserve genetic diversity across the entire distribution area of the species. Our main objective was to use population genetics as well as ecological and phylogeographic data to select Relevant Genetic Units for Conservation (RGUCs) as the first step in designing conservation plans for A. edulis. We identified six RGUCs for in situ conservation, based on estimations of population genetic structure and probabilities of the loss of rare alleles. Additionally, further population parameters, i.e. occupation area, population size, vulnerability, legal status of the population areas, and the historical haplotype distribution, were considered in order to establish which populations deserve conservation priority. Three populations from the Iberian Peninsula, two from Morocco, and one from the Canary Islands represent the total genetic diversity of the species and the rarest allelic variation. Ex situ conservation is recommended to complement the preservation of A. edulis, given that effective in situ population protection is not feasible in all cases. The consideration of complementary phylogeographic and ecological data is useful for management efforts to preserve the evolutionary potential of the species.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1474 ◽  
Author(s):  
Julio Peñas ◽  
Sara Barrios ◽  
Javier Bobo-Pinilla ◽  
Juan Lorite ◽  
M. Montserrat Martínez-Ortega

Astragalus edulis(Fabaceae) is an endangered annual species from the western Mediterranean region that colonized the SE Iberian Peninsula, NE and SW Morocco, and the easternmost Macaronesian islands (Lanzarote and Fuerteventura). Although in Spain some conservation measures have been adopted, it is still necessary to develop an appropriate management plan to preserve genetic diversity across the entire distribution area of the species. Our main objective was to use population genetics as well as ecological and phylogeographic data to select Relevant Genetic Units for Conservation (RGUCs) as the first step in designing conservation plans forA. edulis. We identified six RGUCs for in situ conservation, based on estimations of population genetic structure and probabilities of loss of rare alleles. Additionally, further population parameters, i.e. occupation area, population size, vulnerability, legal status of the population areas, and the historical haplotype distribution, were considered in order to establish which populations deserve conservation priority. Three populations from the Iberian Peninsula, two from Morocco, and one from the Canary Islands represent the total genetic diversity of the species and the rarest allelic variation. Ex situ conservation is recommended to complement the preservation ofA. edulis, given that effective in situ population protection is not feasible in all cases. The consideration of complementary phylogeographic and ecological data is useful for management efforts to preserve the evolutionary potential of the species.


Heredity ◽  
2021 ◽  
Author(s):  
Francis Denisse McLean-Rodríguez ◽  
Denise Elston Costich ◽  
Tania Carolina Camacho-Villa ◽  
Mario Enrico Pè ◽  
Matteo Dell’Acqua

AbstractGenomics-based, longitudinal comparisons between ex situ and in situ agrobiodiversity conservation strategies can contribute to a better understanding of their underlying effects. However, landrace designations, ambiguous common names, and gaps in sampling information complicate the identification of matching ex situ and in situ seed lots. Here we report a 50-year longitudinal comparison of the genetic diversity of a set of 13 accessions from the state of Morelos, Mexico, conserved ex situ since 1967 and retrieved in situ from the same donor families in 2017. We interviewed farmer families who donated in situ landraces to understand their germplasm selection criteria. Samples were genotyped by sequencing, producing 74,739 SNPs. Comparing the two sample groups, we show that ex situ and in situ genome-wide diversity was similar. In situ samples had 3.1% fewer SNPs and lower pairwise genetic distances (Fst 0.008–0.113) than ex situ samples (Fst 0.031–0.128), but displayed the same heterozygosity. Despite genome-wide similarities across samples, we could identify several loci under selection when comparing in situ and ex situ seed lots, suggesting ongoing evolution in farmer fields. Eight loci in chromosomes 3, 5, 6, and 10 showed evidence of selection in situ that could be related with farmers’ selection criteria surveyed with focus groups and interviews at the sampling site in 2017, including wider kernels and larger ear size. Our results have implications for ex situ collection resampling strategies and the in situ conservation of threatened landraces.


Silva Fennica ◽  
2020 ◽  
Vol 54 (5) ◽  
Author(s):  
Agnese Gailīte ◽  
Anita Gaile ◽  
Dainis Ruņģis

L., L. and L. belong to the genus . These wild species are widely distributed and ecologically important within the Baltic countries but they have not been extensively studied using molecular markers. EST-SSR and cpSSR markers were used to investigate the population structure and genetic diversity of these species to obtain information useful for the development of conservation strategies. Wild species populations are moderately genetically differentiated, with some populations more highly differentiated, but without higher order clustering of groups of populations, indicating that there are no dispersal barriers for these species within the Baltic countries. Genetic diversity of populations growing in protected areas, managed forests and intensively utilised public recreational areas is similar. The results from this study can be utilised for the selection of populations for the conservation of the studied species. In addition, complementary conservation strategies can be used for the preservation of rare varieties (e.g. var. ).VacciniummyrtillusV. vitis-idaeaV. uliginosumVacciniumin situVacciniumin situVacciniumex situV. myrtillusleucocarpum


2015 ◽  
Author(s):  
Julio Peñas ◽  
Sara Barrios ◽  
Javier Bobo-Pinilla ◽  
Juan Lorite ◽  
M. Montserrat Martínez-Ortega

Astragalus edulis (Fabaceae) is an endangered annual species from western Mediterranean region that colonized SE Iberian Peninsula, NE and SW Morocco, and the easternmost Macaronesian islands (Lanzarote and Fuerteventura). Although in Spain some conservation measures have been adopted, it is still necessary to develop an appropriate management plan to preserve genetic diversity across the entire distribution area of the species. Our main objective was to use population genetics as well as ecological and phylogeographic data to select Relevant Genetic Units for Conservation (RGUCs) as the first step in designing conservation plans for A. edulis. We identified six RGUCs for in situ conservation, based on estimations of population genetic structure and probabilities of the loss of rare alleles. Additionally, further population parameters, i.e. occupation area, population size, vulnerability, legal status of the population areas, and the historical haplotype distribution, were considered in order to establish which populations deserve conservation priority. Three populations from the Iberian Peninsula, two from Morocco, and one from the Canary Islands represent the total genetic diversity of the species and the rarest allelic variation. Ex situ conservation is recommended to complement the preservation of A. edulis, given that effective in situ population protection is not feasible in all cases. The consideration of complementary phylogeographic and ecological data is useful for management efforts to preserve the evolutionary potential of the species.


AGROFOR ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Agnese GAILĪTE ◽  
Anita GAILE ◽  
Dainis RUŅĢIS

Plants and berries of bilberries (Vaccinium myrtillus L.) are traditionally used in many nations as a local medicine as well as edible plants. They are an important feed source for wild animals and birds. In situ conservation is an important component for the conservation of crop wild relatives (CWR) and wild harvested plants (WHP). Research on population structure and genetic diversity is important and is required for the development and implementation of in situ conservation strategies as well as being useful for ecosystem services management. The aim of this study was to test EST-SSR markers for bilberry genotyping and determine genetic diversity in different forest types – Vacciniosa, Myrtillosa, Hylocomiosa as well as compare populations from various regions of Latvia. Our results indicated that there was a small genetic differentiation between bilberries grown in different forest types (0-2%); most of the variation was found within individuals. Analysing populations in different regions of Latvia, 5% of the genetic variation was found among populations. Analysis using the STRUCTURE software package showed that there were no isolated populations or distinct groups. There was a positive correlation between geographic and genetic distances, indicating that the analysed populations differentiation can be explained by isolation-by-distance, without additional dispersal barriers.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 680
Author(s):  
Thuy T. P. Mai ◽  
Craig M. Hardner ◽  
Mobashwer M. Alam ◽  
Robert J. Henry ◽  
Bruce L. Topp

Macadamia is a recently domesticated Australian native nut crop, and a large proportion of its wild germplasm is unexploited. Aiming to explore the existing diversity, 247 wild accessions from four species and inter-specific hybrids were phenotyped. A wide range of variation was found in growth and nut traits. Broad-sense heritability of traits were moderate (0.43–0.64), which suggested that both genetic and environmental factors are equally important for the variability of the traits. Correlations among the growth traits were significantly positive (0.49–0.76). There were significant positive correlations among the nut traits except for kernel recovery. The association between kernel recovery and shell thickness was highly significant and negative. Principal component analysis of the traits separated representative species groups. Accessions from Macadamia integrifolia Maiden and Betche, M. tetraphylla L.A.S. Johnson, and admixtures were clustered into one group and those of M. ternifolia F. Muell were separated into another group. In both M. integrifolia and M. tetraphylla groups, variation within site was greater than across sites, which suggested that the conservation strategies should concentrate on increased sampling within sites to capture wide genetic diversity. This study provides a background on the utilisation of wild germplasm as a genetic resource to be used in breeding programs and the direction for gene pool conservation.


Environments ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 25
Author(s):  
Caterina M. Antognazza ◽  
Isabella Vanetti ◽  
Vanessa De Santis ◽  
Adriano Bellani ◽  
Monica Di Francesco ◽  
...  

The reintroduction of the extinct beluga sturgeon (Huso huso L.), an anadromous species with economic and traditional relevance, is a priority in next conservation strategies in Northern Italy. The EU-LIFE NATURA project aims to reintroduce the beluga sturgeon in the Po River basin through a captive breeding program. Critical requirements for the success of the program are river connectivity and knowledge of genetic diversity of the selected broodstocks to ensure self-sustainability of reintroduced populations. Here, the four broodstocks used for the reintroduction of beluga sturgeon have been genetically screened, genotyping 13 loci and sequencing mitochondrial DNA cytochrome b (Cyt b) gene and the entire mitochondrial DNA control region (D-Loop). The four broodstocks showed a medium-high level of nuclear genetic variability and the presence of two sub-populations, evidencing a total level of inbreeding coefficients able to sustain the good potential as future breeders. Mitochondrial analyses showed a genetic variability comparable to wild populations, further strengthening the positive potential of the investigated broodstock. Therefore, this study, showed how the degree of genetic diversity found within the four broodstocks used for H. huso reintroduction in the Po River basin could be suitable to ensure the success of the program, avoiding the inbreeding depression associated with founder effect and captive breeding.


Sign in / Sign up

Export Citation Format

Share Document