scholarly journals Genetic diversity and selection signatures in maize landraces compared across 50 years of in situ and ex situ conservation

Heredity ◽  
2021 ◽  
Author(s):  
Francis Denisse McLean-Rodríguez ◽  
Denise Elston Costich ◽  
Tania Carolina Camacho-Villa ◽  
Mario Enrico Pè ◽  
Matteo Dell’Acqua

AbstractGenomics-based, longitudinal comparisons between ex situ and in situ agrobiodiversity conservation strategies can contribute to a better understanding of their underlying effects. However, landrace designations, ambiguous common names, and gaps in sampling information complicate the identification of matching ex situ and in situ seed lots. Here we report a 50-year longitudinal comparison of the genetic diversity of a set of 13 accessions from the state of Morelos, Mexico, conserved ex situ since 1967 and retrieved in situ from the same donor families in 2017. We interviewed farmer families who donated in situ landraces to understand their germplasm selection criteria. Samples were genotyped by sequencing, producing 74,739 SNPs. Comparing the two sample groups, we show that ex situ and in situ genome-wide diversity was similar. In situ samples had 3.1% fewer SNPs and lower pairwise genetic distances (Fst 0.008–0.113) than ex situ samples (Fst 0.031–0.128), but displayed the same heterozygosity. Despite genome-wide similarities across samples, we could identify several loci under selection when comparing in situ and ex situ seed lots, suggesting ongoing evolution in farmer fields. Eight loci in chromosomes 3, 5, 6, and 10 showed evidence of selection in situ that could be related with farmers’ selection criteria surveyed with focus groups and interviews at the sampling site in 2017, including wider kernels and larger ear size. Our results have implications for ex situ collection resampling strategies and the in situ conservation of threatened landraces.

2015 ◽  
Author(s):  
Julio Peñas ◽  
Sara Barrios ◽  
Javier Bobo-Pinilla ◽  
Juan Lorite ◽  
M. Montserrat Martínez-Ortega

Astragalus edulis (Fabaceae) is an endangered annual species from western Mediterranean region that colonized SE Iberian Peninsula, NE and SW Morocco, and the easternmost Macaronesian islands (Lanzarote and Fuerteventura). Although in Spain some conservation measures have been adopted, it is still necessary to develop an appropriate management plan to preserve genetic diversity across the entire distribution area of the species. Our main objective was to use population genetics as well as ecological and phylogeographic data to select Relevant Genetic Units for Conservation (RGUCs) as the first step in designing conservation plans for A. edulis. We identified six RGUCs for in situ conservation, based on estimations of population genetic structure and probabilities of the loss of rare alleles. Additionally, further population parameters, i.e. occupation area, population size, vulnerability, legal status of the population areas, and the historical haplotype distribution, were considered in order to establish which populations deserve conservation priority. Three populations from the Iberian Peninsula, two from Morocco, and one from the Canary Islands represent the total genetic diversity of the species and the rarest allelic variation. Ex situ conservation is recommended to complement the preservation of A. edulis, given that effective in situ population protection is not feasible in all cases. The consideration of complementary phylogeographic and ecological data is useful for management efforts to preserve the evolutionary potential of the species.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1474 ◽  
Author(s):  
Julio Peñas ◽  
Sara Barrios ◽  
Javier Bobo-Pinilla ◽  
Juan Lorite ◽  
M. Montserrat Martínez-Ortega

Astragalus edulis(Fabaceae) is an endangered annual species from the western Mediterranean region that colonized the SE Iberian Peninsula, NE and SW Morocco, and the easternmost Macaronesian islands (Lanzarote and Fuerteventura). Although in Spain some conservation measures have been adopted, it is still necessary to develop an appropriate management plan to preserve genetic diversity across the entire distribution area of the species. Our main objective was to use population genetics as well as ecological and phylogeographic data to select Relevant Genetic Units for Conservation (RGUCs) as the first step in designing conservation plans forA. edulis. We identified six RGUCs for in situ conservation, based on estimations of population genetic structure and probabilities of loss of rare alleles. Additionally, further population parameters, i.e. occupation area, population size, vulnerability, legal status of the population areas, and the historical haplotype distribution, were considered in order to establish which populations deserve conservation priority. Three populations from the Iberian Peninsula, two from Morocco, and one from the Canary Islands represent the total genetic diversity of the species and the rarest allelic variation. Ex situ conservation is recommended to complement the preservation ofA. edulis, given that effective in situ population protection is not feasible in all cases. The consideration of complementary phylogeographic and ecological data is useful for management efforts to preserve the evolutionary potential of the species.


Agriculture ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 129 ◽  
Author(s):  
Lothar Frese ◽  
Maria Bönisch ◽  
Marion Nachtigall ◽  
Uta Schirmak

In Germany, the wild ancestor (Apium graveolens L. ssp. graveolens) of celery and celeriac is threatened by genetic erosion. Seventy-eight potentially suitable genetic reserve sites representing differing ecogeographic units were assessed with regard to the conservation status of the populations. At 27 of the 78 sites, 30 individual plants were sampled and genetically analyzed with 16 polymorphic microsatellite makers. The Discriminant Analysis of Principal Components (DAPC) was applied to identify clusters of genetically similar individuals. In most cases (25 out of 27 occurrences) individuals clustered into groups according to their sampling site. Next to three clearly separated occurrences (AgG, AgUW, AgFEH) two large groups of inland and Baltic Sea coast occurrences, respectively, were recognized. Occurrences from the coastal part of the distribution area were interspersed into the group of inland occurrences and vice versa. The genetic distribution pattern is therefore complex. The complementary compositional genetic differentiation Δj was calculated to identify the Most Appropriate Wild Populations (MAWP) for the establishment of genetic reserves. Altogether 15 sites are recommended to form a genetic reserve network. This organisational structure appears suitable for promoting the in situ conservation of intraspecific genetic diversity and the species’ adaptability. As seed samples of each MAWP will be stored in a genebank, the network would likewise contribute to the long-term ex situ conservation of genetic resources for plant breeding.


2015 ◽  
Author(s):  
Julio Peñas ◽  
Sara Barrios ◽  
Javier Bobo-Pinilla ◽  
Juan Lorite ◽  
M. Montserrat Martínez-Ortega

Astragalus edulis (Fabaceae) is an endangered annual species from western Mediterranean region that colonized SE Iberian Peninsula, NE and SW Morocco, and the easternmost Macaronesian islands (Lanzarote and Fuerteventura). Although in Spain some conservation measures have been adopted, it is still necessary to develop an appropriate management plan to preserve genetic diversity across the entire distribution area of the species. Our main objective was to use population genetics as well as ecological and phylogeographic data to select Relevant Genetic Units for Conservation (RGUCs) as the first step in designing conservation plans for A. edulis. We identified six RGUCs for in situ conservation, based on estimations of population genetic structure and probabilities of the loss of rare alleles. Additionally, further population parameters, i.e. occupation area, population size, vulnerability, legal status of the population areas, and the historical haplotype distribution, were considered in order to establish which populations deserve conservation priority. Three populations from the Iberian Peninsula, two from Morocco, and one from the Canary Islands represent the total genetic diversity of the species and the rarest allelic variation. Ex situ conservation is recommended to complement the preservation of A. edulis, given that effective in situ population protection is not feasible in all cases. The consideration of complementary phylogeographic and ecological data is useful for management efforts to preserve the evolutionary potential of the species.


2020 ◽  
Vol 21 (20) ◽  
pp. 7459
Author(s):  
María Elena González-Benito ◽  
Miguel Ángel Ibáñez ◽  
Michela Pirredda ◽  
Sara Mira ◽  
Carmen Martín

Epigenetic variation, and particularly DNA methylation, is involved in plasticity and responses to changes in the environment. Conservation biology studies have focused on the measurement of this variation to establish demographic parameters, diversity levels and population structure to design the appropriate conservation strategies. However, in ex situ conservation approaches, the main objective is to guarantee the characteristics of the conserved material (phenotype and epi-genetic). We review the use of the Methylation Sensitive Amplified Polymorphism (MSAP) technique to detect changes in the DNA methylation patterns of plant material conserved by the main ex situ plant conservation methods: seed banks, in vitro slow growth and cryopreservation. Comparison of DNA methylation patterns before and after conservation is a useful tool to check the fidelity of the regenerated plants, and, at the same time, may be related with other genetic variations that might appear during the conservation process (i.e., somaclonal variation). Analyses of MSAP profiles can be useful in the management of ex situ plant conservation but differs in the approach used in the in situ conservation. Likewise, an easy-to-use methodology is necessary for a rapid interpretation of data, in order to be readily implemented by conservation managers.


2011 ◽  
Vol 9 (3) ◽  
pp. 411-422 ◽  
Author(s):  
M. R. Ahuja

This study reviews the various conservation strategies applied to the four redwood species, namely coast redwood (Sequoia sempervirens), Sierra redwood or giant sequoia (Sequoiadendron giganteum), dawn redwood (Metasequoia glyptostroboides) and South American redwood or alerce (Fitzroya cupressoides), which are endemic in the USA, China and South America, respectively. All four redwood genera belong to the family Cupressaceae; they are monospecific, share a number of common phenotypic traits, including red wood, and are threatened in their native ranges due to human activity and a changing climate. Therefore, the management objective should be to conserve representative populations of the native species with as much genetic diversity as possible for their future survival. Those representative populations exhibiting relatively high levels of genetic diversity should be selected for germplasm preservation and monitored during the conservation phase by using molecular markers. In situ and ex situ strategies for the preservation of germplasm of the redwoods are discussed in this study. A holistic in situ gene conservation strategy calls for the regeneration of a large number of diverse redwood genotypes that exhibit adequate levels of neutral and adaptive genetic variability, by generative and vegetative methods for their preservation and maintenance in their endemic locations. At the same time, it would be desirable to conserve the redwoods in new ex situ reserves, away from their endemic locations with similar as well as different environmental conditions for testing their growth and survival capacities. In addition, other ex situ strategies involving biotechnological approaches for preservation of seeds, tissues, pollen and DNA in genebanks should also be fully exploited in the face of global climate change.


Diversity ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 315 ◽  
Author(s):  
Carlos Mestanza-Ramón ◽  
Sujan M. Henkanaththegedara ◽  
Paola Vásconez Duchicela ◽  
Yadira Vargas Tierras ◽  
Maritza Sánchez Capa ◽  
...  

Biodiversity is vital for the stability of the planet; its ecosystem services provide essential elements for our survival and well-being. This review analyzes the national biodiversity policies and describes the main strategies for biodiversity conservation in Ecuador, one of the “mega-diverse” countries in the world with the highest species density. It deepens an analysis of in-situ and ex-situ conservation processes. Ecuador has six clear policies for biodiversity conservation. These policies strengthen biodiversity conservation through mechanisms that improve the well-being of wildlife by ensuring human, wildlife and ecosystem health. It promotes actions for the welfare of wildlife, through technical, administrative and legal tools. The National System of Protected Areas, with 60 protected areas, is the most effective in-situ conservation instrument at the country level. Several ex-situ conservation and management means for the conservation of wild species are being utilized, including nurseries, botanical gardens, zoos, germplasm banks, aquariums, species reproduction and rehabilitation centers. Ecuador is making slow progress on ex-situ conservation despite the availability of a sound policy framework, possibly due to financial, infrastructural, and/or technological challenges, and knowledge gaps. We propose fostering international research collaborations and establishing fully funded small-scale captive breeding programs at zoos, aquariums and university research facilities to help recovery of at-risk species of reptiles, amphibians, fish and species beyond Galapagos region. We recommend utilizing citizen science programs to fill the gaps of biodiversity information and increasing efforts to revive the ex-situ conservation strategies in protecting the unique biodiversity of Ecuador.


2018 ◽  
Author(s):  
Mauro Zampiglia ◽  
Roberta Bisconti ◽  
Luigi Maiorano ◽  
Gaetano Aloise ◽  
Antonino Siclari ◽  
...  

AbstractUnprecedented rates of biodiversity loss rise the urgency for preserving species ability to cope with ongoing global changes. An approach in this direction is to target intra-specific hotspots of genetic diversity as conservation priorities. However, these hotspots are often identified by sampling at a spatial resolution too coarse to be useful in practical management of threatened species, hindering the long-appealed dialog between conservation stakeholders and conservation genetic researchers. Here, we investigated the spatial and temporal variation in species presence, genetic diversity, as well as potential risk factors, within a previously identified hotspot of genetic diversity for the endangered Apennine yellow bellied toad Bombina pachypus. Our results show that this hotspot is neither a geographically homogeneous nor a temporally stable unit. Over a time-window spanning 10-40 years since previous assessments, B. pachypus populations declined in large portions of its hotspot, and their genetic diversity levels decreased. Considering the demographic trend, genetic and epidemiological data, and models of current and future climatic suitability, populations at the extreme south of the hotspot area still qualify for urgent in-situ conservation actions, whereas northern populations would be better managed through a mix of in-situ and ex-situ actions. Our results emphasize that identifying hotspot of genetic diversity, albeit essential step, does not suffice to warrant on-ground conservation of threatened species. Hotspots should be analysed at finer geographic and temporal scales, to provide conservation stakeholders with key knowledge to best define conservation priorities, and to optimize resource allocation to alternative management practices.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260651
Author(s):  
Sintayehu Admas ◽  
Kassahun Tesfaye ◽  
Teklehaimanot Haileselassie ◽  
Eleni Shiferaw ◽  
K. Colton Flynn

Evaluation of the genetic diversity and an understanding of the genetic structure and relationships of chickpea genotypes are valuable to design efficient germplasm conservation strategies and crop breeding programs. Information is limited, in these regards, for Ethiopian chickpea germplasms. Therefore, the present study was carried out to estimate the genetic diversity, population structure, and relationships of 152 chickpea genotypes using simple sequence repeats (SSR) markers. Twenty three SSR markers exhibited polymorphism producing a total of 133 alleles, with a mean of 5.8 alleles per locus. Analyses utilizing various genetic-based statistics included pairwise population Nei’s genetic distance, heterozygosity, Shannon’s information index, polymorphic information content, and percent polymorphism. These analyses exemplified the existence of high genetic variation within and among chickpea genotypes. The 152 genotypes were divided into two major clusters based on Nei’s genetic distances. The exotic genotypes were grouped in one cluster exclusively showing that these genotypes are distinct to Ethiopian genotypes, while the patterns of clustering of Ethiopian chickpea genotypes based on their geographic region were not consistent because of the seed exchange across regions. Model-based population structure clustering identified two discrete populations. These finding provides useful insight for chickpea collections and ex-situ conservation and national breeding programs for widening the genetic base of chickpea.


Sign in / Sign up

Export Citation Format

Share Document