scholarly journals Quantitative Assessment of Surface Runoff and Base Flow Response to Multiple Factors in Pengchongjian Small Watershed

Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 553 ◽  
Author(s):  
Lei Ouyang ◽  
Shiyu Liu ◽  
Jingping Ye ◽  
Zheng Liu ◽  
Fei Sheng ◽  
...  

Quantifying the impacts of multiple factors on surface runoff and base flow is essential for understanding the mechanism of hydrological response and local water resources management as well as preventing floods and droughts. Despite previous studies on quantitative impacts of multiple factors on runoff, there is still a need for assessment of the influence of these factors on both surface runoff and base flow in different temporal scales at the watershed level. The main objective of this paper was to quantify the influence of precipitation variation, evapotranspiration (ET) and vegetation restoration on surface runoff and base flow using empirical statistics and slope change ratio of cumulative quantities (SCRCQ) methods in Pengchongjian small watershed (116°25′48″–116°27′7″ E, 29°31′44″–29°32′56″ N, 2.9 km2), China. The results indicated that, the contribution rates of precipitation variation, ET and vegetation restoration to surface runoff were 42.1%, 28.5%, 29.4% in spring; 45.0%, 37.1%, 17.9% in summer; 30.1%, 29.4%, 40.5% in autumn; 16.7%, 35.1%, 48.2% in winter; and 35.0%, 38.7%, 26.3% in annual scale, respectively. For base flow they were 33.1%, 41.9%, 25.0% in spring; 39.3%, 51.9%, 8.8% in summer; 40.2%, 38.2%, 21.6% in autumn; 24.3%, 39.4%, 36.3% in winter; and 24.4%, 47.9%, 27.7% in annual scale, respectively. Overall, climatic factors, including precipitation and ET change, affect surface runoff generation the most, while ET affects the dynamic change of annual base flowthe most. This study highlights the importance of optimizing forest management to protect the water resource.

Author(s):  
Rafael Pires Fernandes ◽  
Robson Willians da Costa Silva ◽  
Luiz Felippe Salemi ◽  
Tatiana Morgan Berteli de Andrade ◽  
Jorge Marcos de Moraes

2015 ◽  
Vol 16 (1) ◽  
pp. 214-231 ◽  
Author(s):  
Graham P. Weedon ◽  
Christel Prudhomme ◽  
Sue Crooks ◽  
Richard J. Ellis ◽  
Sonja S. Folwell ◽  
...  

Abstract Nine distributed hydrological models, forced with common meteorological inputs, simulated naturalized daily discharge from the Thames basin for 1963–2001. While model-dependent evaporative losses are critical for modeling mean discharge, multiple physical processes at many time scales influence the variability and timing of discharge. Here the use of cross-spectral analysis is advocated to measure how the average amplitude—and independently, the average phase—of modeled discharge differ from observed discharge at daily to decadal time scales. Simulation of the spectral properties of the model discharge via numerical manipulation of precipitation confirms that modeled transformation involves runoff generation and routing that amplify the annual cycle, while subsurface storage and routing of runoff between grid boxes introduces most of the autocorrelation and delays. Too much or too little modeled evaporation affects discharge variability, as do the capacity and time constants of modeled stores. Additionally, the performance of specific models would improve if four issues were tackled: 1) nonsinusoidal annual variations in model discharge (prolonged low base flow and shortened high base flow; three models), 2) excessive attenuation of high-frequency variability (three models), 3) excessive short-term variability in winter half years but too little variability in summer half years (two models), and 4) introduction of phase delays at the annual scale only during runoff generation (three models) or only during routing (one model). Cross-spectral analysis reveals how reruns of one model using alternative methods of runoff generation—designed to improve performance at the weekly to monthly time scales—degraded performance at the annual scale. The cross-spectral approach facilitates hydrological model diagnoses and development.


2004 ◽  
Vol 8 (5) ◽  
pp. 903-922 ◽  
Author(s):  
M. Bari ◽  
K. R. J. Smettem

Abstract. A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted monthly hydrographs. The observed and predicted monthly runoff for all catchments matched well with coefficients of determination (R2) ranging from 0.68 to 0.87. Predictions were relatively poor for: (i) the Ernies catchment (lowest rainfall, forested), and (ii) months with very high flows. Overall, the predicted mean annual streamflow was within ±8% of the observed values. Keywords: monthly streamflow, land use change, conceptual model, data-based approach, groundwater


MAUSAM ◽  
2021 ◽  
Vol 72 (3) ◽  
pp. 597-606
Author(s):  
CHINMAYA PANDA ◽  
DWARIKA MOHAN DAS ◽  
B. C. SAHOO ◽  
B. PANIGRAHI ◽  
K. K. SINGH

In this present study, Soil and Water Assessment Tool (SWAT) embedded with ArcGIS interface has been used to simulate the surface runoff from the un-gauged sub-catchments in the upper catchment of Subarnarekha basin. Model calibration and validation were performed with the help of Sequential Uncertainty Fitting (SUFI-2) in-built in the SWAT-CUP package (SWAT Calibration Uncertainty Programs). The model was calibrated for a period from 1996 to 2008 with 3 years warm up period (1996-1998) and validated for a period of 5 years from 2009 to 2013. The model evaluation was performed by Nash - Sutcliffe coefficient (NSE), Coefficient of determination (R2) and Percentage Bias (PBIAS). The degree of uncertainty was evaluated by P and R factors. Basing upon the R2, NSE and PBIAS values respectively, of the order of 0.90, 0.90 and -12%, during calibration and 0.85, 0.83 and -15% during validation, substantiate performance of the model. All uncertainties of model parameters have been well taken by the P and R factors respectively, of the order of 0.95 and 0.77 during calibration and 0.82 and 0.87 during validation. The runoff generation from 19 sub-catchments of Adityapur catchment varies from 29.2-44.1% of the annual rainfall and average surface runoff simulated for the entire catchment is 545 mm. As the surface runoff generated in most of the sub-catchments amounts to above 30% of rainfall, it is recommended for adequate number of structural interventions at appropriate locations in the catchment to store the rainfall excess for providing irrigation, recharging groundwater and restricting the sediment and nutrient loss.


2018 ◽  
Vol 246 ◽  
pp. 01099
Author(s):  
Jun Yin ◽  
Zhe Yuan ◽  
Run Wang

The projection of surface runoff in the context of climate change is important to the rational utilization and distribution of water resources. This study did a case study in regions above Danjiangkou in Hanjiang River Basin. A basin scale hydrological model was built based on macroscale processes of surface runoff and water-energy balance. This model can describe the quantity relationship among climatic factors, underlying surface and surface runoff. Driven by hypothetical climatic scenarios and climate change dataset coming from CMIP5, the climate change impacts on surface runoff in the regions above Danjiangkou in Hanjiang River Basin can be addressed. The results showed that: (1) Compared with other distributed hydrological models, the hydrological model in this study has fewer parameters and simpler calculation methods. The model was good at simulating annual surface runoff. (2) The surface runoff was less sensitivity to climate change in the regions above Danjiangkou in Hanjiang River Basin. A 1°C increase in temperature might results in a surface runoff decrease of 2~5% and a 10% precipitation increase might result in a streamflow increase of 14~17%. (3) The temperature across the Fu River Basin were projected to increase by 1.4~2.3°C in 1961 to 1990 compared with that in 1961 to 1990. But the uncertainty existed among the projection results of precipitation. The surface runoff was excepted to decrease by 1.3~23.9% without considering the climate change projected by NorESM1-M and MIROC-ESM-CHEM, which was much different from other GCMs.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 171 ◽  
Author(s):  
Hui Xie ◽  
Zhenyao Shen ◽  
Lei Chen ◽  
Xijun Lai ◽  
Jiali Qiu ◽  
...  

Hydrologic modeling is usually applied to two scenarios: continuous and event-based modeling, between which hydrologists often neglect the significant differences in model application. In this study, a comparison-based procedure concerning parameter estimation and uncertainty analysis is presented based on the Hydrological Simulation Program–Fortran (HSPF) model. Calibrated parameters related to base flow and moisture distribution showed marked differences between the continuous and event-based modeling. Results of the regionalized sensitivity analysis identified event-dependent parameters and showed that gravity drainage and storage outflow were the primary runoff generation processes for both scenarios. The overall performance of the event-based simulation was better than that of the daily simulation for streamflow based on the generalized likelihood uncertainty estimation (GLUE). The GLUE analysis also indicated that the performance of the continuous model was limited by several extreme events and low flows. In the event-based scenario, the HSPF model performances decreased as the precipitation became intense in the event-based modeling. The structure error of the HSFP model was recognized at the initial phase of the rainfall-event period. This study presents a valuable opportunity to understand dominant controls in different hydrologic scenario and guide the application of the HSPF model.


2004 ◽  
Vol 44 (3) ◽  
pp. 283 ◽  
Author(s):  
S. R. Murphy ◽  
G. M. Lodge ◽  
S. Harden

Surface runoff can represent a significant part of the hydrological balance of grazed pastures on the north-west slopes of New South Wales, and is influenced by a range of rainfall characteristic, soil property, and pasture conditions. Runoff plots were established on grazed pastures at 3 sites as part of the Sustainable Grazing Systems National Experiment (SGS NE). Pastures were either native (redgrass, wallaby grass and wire grass) or sown species (phalaris, subterranean clover and lucerne) and a range of grazing management treatments were imposed to manipulate pasture herbage mass, litter mass and ground cover. Rainfall and runoff events were recorded using automatic data loggers between January 1998 and September 2001. Stored soil water in the surface layer (0–22.5 cm) was monitored continuously using electrical resistance sensors and automatic loggers. Pasture herbage mass, litter mass and ground cover were estimated regularly to provide information useful in interpreting runoff generation processes.Total runoff ranged from 6.6 mm at Manilla (0.3% of rainfall) to 185 mm at Nundle (5.7% of rainfall) for different grazing treatments, with the largest runoff event being recorded at Nundle (46.7 mm). Combined site linear regression analyses showed that soil depth, rainfall depth and rainfall duration explained up to 30.3% of the variation in runoff depth. For individual sites, these same variables were also important, accounting for 13.3–33.6% of the variation in runoff depth. Continuous monitoring of stored soil water in relation to these runoff events indicated that the majority of these events were generated by saturation excess, with major events in winter contributing substantially to regional flooding. Long-term simulation modelling (1957–2001) using the SGS Pasture Model indicated that most runoff events were generated in summer, which concurred with the number of flood events recorded at Gunnedah, NSW, downstream of the SGS sites. However, floods also occurred frequently in winter, but the simulations generated few runoff events at that time of the year. These results have important implications for sustainability of grazed pastures and long-term simulation modelling of the hydrological balance of such systems, since runoff generation processes are likely to vary both spatially and temporally for different rainfall events.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 163 ◽  
Author(s):  
Dejian Zhang ◽  
Qiaoyin Lin ◽  
Xingwei Chen ◽  
Tian Chai

Determining the amount of rainfall that will eventually become runoff and its pathway is a crucial process in hydrological modelling. We proposed a method to better estimate curve number by adding an additional component (AC) to better account for the effects of daily rainfall intensity on rainfall-runoff generation. This AC is determined by a regression equation developed from the relationship between the AC series derived from fine-tuned calibration processes and observed rainfall series. When incorporated into the Soil and Water Assessment Tool and tested in the Anxi Watershed, it is found, overall, the modified SWAT (SWAT-ICN) outperformed the original SWAT (SWAT-CN) in terms of stream flow, base flow, and annual extreme flow simulation. These models were further evaluated with the data sets of two adjacent watersheds. Similar results were achieved, indicating the ability of the proposed method to better estimate curve number.


2019 ◽  
Vol 164 ◽  
pp. 276-292
Author(s):  
Abdul Razaq Rezaei ◽  
Zubaidah Binti Ismail ◽  
Mohammad Hossein Niksokhan ◽  
Abu Hanipah Ramli ◽  
Lariyah Mohd Sidek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document