scholarly journals The Impact of Climate Change and Strong Anthropopressure on the Annual Growth of Scots Pine (Pinus sylvestris L.) Wood Growing in Eastern Poland

Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 661
Author(s):  
Robert Kalbarczyk ◽  
Monika Ziemiańska ◽  
Anna Nieróbca ◽  
Joanna Dobrzańska

Changes in annual tree ring width (TRW) and its size depends not only on the changing climate and natural stress factors such as extreme air temperatures, shortages in rainfall and excess rainfall during the growing season, but also on anthropogenic stress, including chemical compounds emitted to the atmosphere or lowering of the groundwater table caused by the operations of plants with high environmental impact. The purpose of this article is to assess the impact of meteorological conditions and anthropogenic factors on the size of annual growth of Scots pine tree-stands in the conditions of the climate of central-eastern Poland. On the basis of five created site chronologies in the vicinity of Zakłady Azotowe Puławy (nitrogen factories in Puławy) and using the moving correlation analysis and multiple regression analysis, a significant influence of temperature and precipitation conditions on the TRW size is proved. A significant, positive influence of air temperature on TRW was proved for the majority of chronologies created in the period of January–March, as well as in June, while it remained negative in May. The wide rings of Scots pines were formed when the precipitation of October and January (prior to the resumption of cambium activity) was lower than the average, and higher in April and in June–August. After including the anthropopressure factors in the regression equations, the description of the variability of the annual tree ring width was corrected. The coefficient of determination ranged from approx. 29% to even above 45% and was higher, on average by 10%, for all studied chronologies of Scots pine compared to the one calculated for constructed equations considering only meteorological conditions. The strength and direction of the impact of the independent variables (SO2, NH3, NOx) analysed on TRW mainly depended on the distance from the plants, as well as on the direction of inflow of industrial pollution to the stands examined. In light of the proven climate changes in central and eastern Poland, the growth conditions of pine stands will most likely deteriorate.

2010 ◽  
pp. no-no ◽  
Author(s):  
BRITTA EILMANN ◽  
NINA BUCHMANN ◽  
ROLF SIEGWOLF ◽  
MATTHIAS SAURER ◽  
PAOLO CHERUBINI ◽  
...  

2021 ◽  
Vol 875 (1) ◽  
pp. 012074
Author(s):  
B Aparin ◽  
B Babikov ◽  
D Zolotukhin ◽  
E Mingareeva

Abstract The study presents an analysis of radial growth of Scots pine and Norway spruce trees growing on drained soils formed on varved clays at the sample sites of the Lisino Experimental Forestry (Lisino). Based on dendrochronological studies in Lisino, it has been found that the radial growth of Scots pine and Norway spruce is a sensitive indicator of changes in the soil water regime, climate, and phytocenotic relationships. On the basis of the character of tree-ring width growth, the growth charts allowed distinguishing zones with close to average growth values, as well as with increased and decreased values of radial growth. The cyclical pattern of tree ring width is well expressed in the successive change of zones. The availability of dendrochronological research materials with precise spatial and temporal reference makes it possible to organize monitoring of radial growth of trees as an indicator of changes in climate and habitat conditions.


2021 ◽  
Author(s):  
Paolo Cherubini ◽  
Giovanna Battipaglia ◽  
John L. Innes

<p>Forest health, although not yet unanimously defined, has been monitored in the past forty years assessing tree vitality, trying to estimate tree photosynthesis rates and productivity. Used in monitoring forest decline in Central Europe since the 1980s, crown foliage transparency has been commonly believed to be the best indicator of tree condition in relation to air pollution, although annual variations appear more closely related to water stress. Although crown transparency is not a good indicator of tree photosynthesis rates, defoliation is still one of the most used indicators of tree vitality. Tree rings have been often used as indicators of past productivity. However, long-term tree-growth trends are difficult to interpret because of sampling bias, and ring-width patterns do not provide any information about tree physiological processes. In the past two decades, tree-ring carbon and oxygen stable isotopes have been used  to reconstruct the impact of past climatic events, such as drought. They have proven to be useful tools for retrospectively understanding physiological processes and tree response to  stress factors. Tree-ring stable isotopes integrate crown transpiration rates and photosynthesis rates and may enhance our understanding of tree vitality. They are promising indicators of tree vitality. We call for the use of tree-ring stable isotopes in future monitoring programmes.</p>


2007 ◽  
Vol 26 (-1) ◽  
pp. 39-45 ◽  
Author(s):  
Anna Cedro

Tree-Ring Chronologies of Downy Oak (Quercus Pubescens), Pedunculate Oak (Q. Robur) and Sessile Oak (Q. Petraea) in the Bielinek Nature Reserve: Comparison of the Climatic Determinants of Tree-Ring WidthIn 2004-2006, 50 trees of downy oak (Quercus pubescens), pedunculate oak (Q. robur) and sessile oak (Q. petraea) were sampled in the Bielinek Nature Reserve. The following chronologies were established from their tree-ring series: OMS of 212 years (1793-2004) for downy oaks well as D10 of 183 years (1817-1999) and D13 of 211 years (1789-1999) for the two indigenous oak species pedunculate and sessile oak, respectively. These chronologies were used for signature years and response function analyses. All three chronologies were highly similar, which points to identical responses to the ambient meteorological conditions. The radial increment of downy oak depends primarily on the amount of precipitation. A high annual sum of precipitation, copious rain in spring-summer in particular, results in wide tree rings. Precipitation in form of rain and snow in winter, too, enhance tree growth by raising the groundwater level and improving the water supply in the habitat during the subsequent spring. Droughts in spring and summer, coupled with high air temperature, result in narrow rings. The tree-ring width/climate relationships at the two indigenous oak species are very similar to those of downy oak. Responses are, however, more distinct and with a higher statistical significance.


Author(s):  
Marina V. Fonti ◽  
Elena A. Babushkina ◽  
Dina F. Zhirnova ◽  
Eugene A. Vaganov

Tree-ring formation studies are important for assessing the impact of environmental factors on tree growth at intra-seasonal resolution. This information is necessary for understanding plant acclimatization to current and expected climate changes. Little is still known about how tree age may affect the duration and rate of annual ring formation. In this study, we investigated tree-ring formation in Scots pine (Pinus sylvestris L.) trees of different ages (30- and 95-year-old trees) from the foreststeppe zone in Southern Siberia. The main objectives were 1) to estimate the timing of cambial activity by distinguishing the phases of division, enlargement, wall thickening, and maturation of tracheids and 2) to compare the anatomical structure of the tracheids forming the annual rings of the differently aged trees. Stem tissue was sampled weekly from April to September 2014. The results showed a 1-2 week difference in duration of the phases of xylem formation between the groups; in addition, the ring width of the young trees was slightly narrower. The size of the tracheids of the entirely formed ring (i.e. the results of the enlargement phase) did not differ between the groups whereas the dynamics of the cell-wall thickness showed significant differences. The data obtained in the present study can provide references to calibrate process-based models linking environment to wood formation. These data can be used to benchmark time-explicit simulated measurements of annual ring increment and cell anatomical structure against the corresponding parameters of mature trees growing under natural conditions


2020 ◽  
Author(s):  
Etienne Boucher ◽  
Ignacio Hermoso de Mendoza ◽  
Fabio Gennaretti

<p>The ecophysiological forest model MAIDENiso (Modeling and Analysis In + isotopes) uses a set of mechanistic rules to simulate the production, allocation and growth of virtual trees. MAIDENiso is adapted to the boreal tree species Picea mariana Mill. (Black spruce), but lacks a hydrological module adapted for boreal meteorological conditions. With the recent addition of a snow/ice module, MAIDENiso is now capable of realistically simulating snow cover and discharge in high latitude regions, while at the same time capturing climate-sensitive processes such as the enrichment of heavy water isotopes due to snow sublimation. The more realistic outputs of the model can be compared to tree ring records (ring widths and stable isotopes). This allows us to use an inversion algorithm (based on a Metropolis Hastings random walk) to estimate past hydroclimate conditions that are in line with physiological and hydrological processes of high boreal regions. We apply this methodology to a millennial chronology of tree ring width and cellulose isotopes from sub-fossil tree remains in North-Quebec, and produce an updated hydroclimate reconstruction of the last 1000 years in this region.</p><p> </p>


2019 ◽  
Vol 54 ◽  
pp. 1-10 ◽  
Author(s):  
Roberts Matisons ◽  
Diāna Jansone ◽  
Didzis Elferts ◽  
Andis Adamovičs ◽  
Volker Schneck ◽  
...  

2020 ◽  
Vol 45 (4) ◽  
pp. 283
Author(s):  
Joanna Barniak ◽  
Agnieszka Jureczko

Tree-ring analysis was used to investigate the impact of air pollution on forest stands in the southern part of the Upper Silesia region of southern Poland. Four about 120 years old Scots pine stands located near Wodzisław Śląski and Rybnik were selected for study and 20 increment core samples from each stand were taken. All study stands were selected based upon their considerable exposure to air and dust pollution.The results of dendrochronological analysis showed strong and significant reductions in tree ring growth especially during the period from 1960 to 1990. A significant number of trees with reductions (85%) was observed in two Scots pine stands both of which are directly exposed to air pollution from mine-owned coking plant and power and heating plants. Since 1990s the improved growth of these pines was clearly noted. A comparison for the period 1970 to 1990 for stands located west from the main emitters’ versus stands east and directly exposed found fewer trees with growth reductions (ca. 40%). At the beginning of the 21st century, a large number of trees in these western stands were observed with growth reductions between 50 and 60%. Probably, these trees were affected by air pollution from a nearby power plant located immediately across the border in the Czech Republic. Relationships between periods of severe reductions in ring width growth or missing rings were noted in a large percentage of pine trees in all four stands; these cross-stand relationships suggested common weather-related impacts. Missing rings were noted in 1956, 1963, 1968, 1970, 1971, 1973, 1976 and 1979.


2018 ◽  
Vol 79 (2) ◽  
pp. 105-112
Author(s):  
Anna Cedro ◽  
Bernard Cedro

Abstract The aim of the present work was to characterize the growth – climate relationship of pines growing in the Szczecin city forests in intensively used recreational areas and to identify the effect of air pollutants emitted by a nearby chemical factory on tree-ring width. Our research area was located in the Głębokie forest complex, which is one of the most frequently visited. The chemical factory Police that produces fertilizers is located at a distance 11 km away from the study plot. The largest emissions of pollutants from the factory in terms of volume occurred in the 1980s and early 1990s. Wood samples were collected from Scots pine (Pinus sylvestris L.) with the Pressler borer from 30 trees and examined using standard dendrochronological methodology. The result was a local chronology of 169 years from 1848–2016. Dendroclimatological analyses indicated that the weather conditions at the turn from winter to spring are the dominant factors influencing radial growth. For example, higher than average temperatures in February, March and April result in a wide tree-ring in the upcoming growth season. Following Nowacki and Abram’s method, we also determined the relative growth change in order to delimit the timeframe when air pollution potentially alters tree-ring width. Due to the lack of data for the period 1848–1945, the increasing and decreasing relative growth could not be linked to specific events. For the period 1944–1972 however, we observed and increase in the tree-ring width, which in this case can be attributed to favorable weather conditions. The final period, 1973–1991, on the other hand showed the strongest decline in annual growth throughout our chronology and this was largely due to the nearby chemical factories, which released huge amounts of pollution into the atmosphere during this period. At present, despite new technologies and a decrease in overall production by the nearby chemical factory, we found a negative trend in ring width dynamics indicating a need for pollutant monitoring and further research.


Sign in / Sign up

Export Citation Format

Share Document