scholarly journals Advancing the Science of Wildland Fire Dynamics Using Process-Based Models

Fire ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 32 ◽  
Author(s):  
Chad Hoffman ◽  
Carolyn Sieg ◽  
Rodman Linn ◽  
William Mell ◽  
Russell Parsons ◽  
...  

As scientists and managers seek to understand fire behavior in conditions that extend beyond the limits of our current empirical models and prior experiences, they will need new tools that foster a more mechanistic understanding of the processes driving fire dynamics and effects. Here we suggest that process-based models are powerful research tools that are useful for investigating a large number of emerging questions in wildland fire sciences. These models can play a particularly important role in advancing our understanding, in part, because they allow their users to evaluate the potential mechanisms and interactions driving fire dynamics and effects from a unique perspective not often available through experimentation alone. For example, process-based models can be used to conduct experiments that would be impossible, too risky, or costly to do in the physical world. They can also contribute to the discovery process by inspiring new experiments, informing measurement strategies, and assisting in the interpretation of physical observations. Ultimately, a synergistic approach where simulations are continuously compared to experimental data, and where experiments are guided by the simulations will profoundly impact the quality and rate of progress towards solving emerging problems in wildland fire sciences.

Author(s):  
Hadj Miloua

Current study focuses to the application of an advanced physics-based (reaction–diffusion) fire behavior model to the fires spreading through surface vegetation such as grasslands and elevated vegetation such as trees present in forest stands. This model in three dimensions, called Wildland Fire Dynamics Simulator WFDS, is an extension, to vegetative fuels, of the structural FDS developed at NIST. For simplicity, the vegetation was assumed to be uniformly distributed in a tree crown represented by a well defined geometric shape. This work on will focus on predictions of thermal function such as the radiation heat transfer and and thermal function for diverse cases of spatial distribution of vegetation in forest stands. The influence of wind, climate characteristics and terrain topography will also be used to extend and validate the model. The results obtained provide a basis to carry out a risk analysis for fire spread in the studied vegetative fuels in the Mediterranean forest fires.


2017 ◽  
Vol 35 (5) ◽  
pp. 359-378 ◽  
Author(s):  
Albert Simeoni ◽  
Zachary C Owens ◽  
Erik W Christiansen ◽  
Abid Kemal ◽  
Michael Gallagher ◽  
...  

An experimental fire was conducted in 2016, in the Pinelands National Reserve of New Jersey, to assess the reliability of the fire pattern indicators used in wildland fire investigation. Objects were planted in the burn area to support the creation of the indicators. Fuel properties and environmental data were recorded. Video and infrared cameras were used to document the general fire behavior. This work represents the first step in the analysis by developing an experimental protocol suitable for field studies and describing how different fire indicators appeared in relation to fire behavior. Most of the micro- and macroscale indicators were assessed. The results show that some indicators are highly dependent on local fire conditions and may contradict the general fire spread. Overall, this study demonstrates that fire pattern indicators are a useful tool for fire investigators but that they must be interpreted through a general analysis of the fire behavior with a good understanding of fire dynamics.


2016 ◽  
Vol 46 (2) ◽  
pp. 234-248 ◽  
Author(s):  
Erin J. Belval ◽  
Yu Wei ◽  
Michael Bevers

Wildfire behavior is a complex and stochastic phenomenon that can present unique tactical management challenges. This paper investigates a multistage stochastic mixed integer program with full recourse to model spatially explicit fire behavior and to select suppression locations for a wildland fire. Simplified suppression decisions take the form of “suppression nodes”, which are placed on a raster landscape for multiple decision stages. Weather scenarios are used to represent a distribution of probable changes in fire behavior in response to random weather changes, modeled using probabilistic weather trees. Multistage suppression decisions and fire behavior respond to these weather events and to each other. Nonanticipativity constraints ensure that suppression decisions account for uncertainty in weather forecasts. Test cases for this model provide examples of fire behavior interacting with suppression to achieve a minimum expected area impacted by fire and suppression.


2003 ◽  
Vol 12 (2) ◽  
pp. 195 ◽  
Author(s):  
Ralph M. Nelson, Jr.

Catchpole et al. (1998) reported rates of spread for 357 heading and no-wind fires burned in the wind tunnel facility of the USDA Forest Service's Fire Sciences Laboratory in Missoula, Montana for the purpose of developing models of wildland fire behavior. The fires were burned in horizontal fuel beds with differing characteristics due to various combinations of fuel type, particle size, packing ratio, bed depth, moisture content, and wind speed. In the present paper, fuel particle and fuel bed data for 260 heading fires from that study (plus as-yet unreported combustion efficiency and reaction time data) are used to develop models for predicting fuel bed reaction time and mass loss rate. Reaction time is computed from the flameout time of a single particle and fuel bed structural properties. It is assumed that the beds burn in a combustion regime controlled by the rate at which air mixes with volatiles produced during pyrolysis, and that not all air entering the fuel bed reaction zone participates in combustion. Comparison of reaction time and burning rate predictions with experimental values is encouraging in view of the simplified modeling approach and uncertainties associated with the experimental measurements.


2017 ◽  
Vol 26 (11) ◽  
pp. 973 ◽  
Author(s):  
Miguel G. Cruz ◽  
Martin E. Alexander ◽  
Andrew L. Sullivan

Generalised statements about the state of fire science are often used to provide a simplified context for new work. This paper explores the validity of five frequently repeated statements regarding empirical and physical models for predicting wildland fire behaviour. For empirical models, these include statements that they: (1) work well over the range of their original data; and (2) are not appropriate for and should not be applied to conditions outside the range of the original data. For physical models, common statements include that they: (3) provide insight into the mechanisms that drive wildland fire spread and other aspects of fire behaviour; (4) give a better understanding of how fuel treatments modify fire behaviour; and (5) can be used to derive simplified models to predict fire behaviour operationally. The first statement was judged to be true only under certain conditions, whereas the second was shown not to be necessarily correct if valid data and appropriate modelling forms are used. Statements three through five, although theoretically valid, were considered not to be true given the current state of knowledge regarding fundamental wildland fire processes.


2018 ◽  
Vol 194 ◽  
pp. 452-463 ◽  
Author(s):  
Eric V. Mueller ◽  
Nicholas Skowronski ◽  
Jan C. Thomas ◽  
Kenneth Clark ◽  
Michael R. Gallagher ◽  
...  

2020 ◽  
pp. 103051 ◽  
Author(s):  
Eric V. Mueller ◽  
Nicholas S. Skowronski ◽  
Kenneth L. Clark ◽  
Michael R. Gallagher ◽  
William E. Mell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document