scholarly journals Flow Pressure Behavior Downstream of Ski Jumps

Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 168 ◽  
Author(s):  
Agostino Lauria ◽  
Giancarlo Alfonsi ◽  
Ali Tafarojnoruz

Ski jump spillways are frequently implemented to dissipate energy from high-speed flows. The general feature of this structure is to transform the spillway flow into a free jet up to a location where the impact of the jet creates a plunge pool, representing an area for potential erosion phenomena. In the present investigation, several tests with different ski jump bucket angles are executed numerically by means of the OpenFOAM® digital library, taking advantage of the Reynolds-averaged Navier–Stokes equations (RANS) approach. The results are compared to those obtained experimentally by other authors as related to the jet length and shape, obtaining physical insights into the jet characteristics. Particular attention is given to the maximum pressure head at the tailwater. Simple equations are proposed to predict the maximum dynamic pressure head acting on the tailwater, as dependent upon the Froude number, and the maximum pressure head on the bucket. Results of this study provide useful suggestions for the design of ski jump spillways in dam construction.

Author(s):  
Volodymyr Kotsiuruba ◽  
Ivan Datsenko ◽  
Volodymyr Dachkovsky ◽  
Ruslan Cherevko ◽  
Vasyl Polyulyak ◽  
...  

In modern conditions, sheltering people in protective structures, as a way of protection from dangers, in combination with evacuation from the affected areas (pollution) and the use of personal protective equipment, increases the reliability of public protection. In conditions when evacuation measures from cities can be complicated in a short time, protection of the population in shelters becomes the only possible and effective. Therefore, an important task is to study the impact of loads caused by the explosion of various munitions, substantiate recommendations for improving the protective properties of the shelter and the choice of their location. The most common issues are considered in the article that arise during the arrangement of shelter in buildings and outside them. Based on experimental studies, Taylor's formula and the system of non-stationary Navier-Stokes equations for gas, it’s conducted an analysis of the influence of external and internal factors on the possible nature of the dynamic load from the shock wave on buildings, structures and structural elements in which shelters are located. The results of studies of the parameters of dynamic loads showed that if the storage facilities are located in the basements of buildings, their stability is characterized by three parameters: maximum pressure, time to increase the load to maximum and effective time. The parameters of the loads and the law of their change over the time depend on the location of the structure relative to the surface of the earth and the building, the force of the explosion and the distance to the center of the explosion.


1997 ◽  
Vol 52 (4) ◽  
pp. 358-368 ◽  
Author(s):  
Michio Nishida ◽  
Masashi Matsumotob

Abstract • This paper describes a computational study of the thermal and chemical nonequilibrium occuring in a rapidly expanding flow of high-temperature air transported as a free jet from an orifice into low-density stationary air. Translational, rotational, vibrational and electron temperatures are treated separately, and in particular the vibrational temperatures are individually treated; a multi-vibrational temperature model is adopted. The governing equations are axisymmetric Navier-Stokes equations coupled with species vibrational energy, electron energy and species mass conservation equations. These equations are numerically solved, using the second order upwind TVD scheme of the Harten-Yee type. The calculations were carried out for two different orifice temperatures and also two different orifice diameters to investigate the effects of such parameters on the structure of a nonequilibrium free jet.


2020 ◽  
Vol 67 ◽  
pp. 100-119 ◽  
Author(s):  
Laurent Boudin ◽  
Céline Grandmont ◽  
Bérénice Grec ◽  
Sébastien Martin ◽  
Amina Mecherbet ◽  
...  

In this paper, we propose a coupled fluid-kinetic model taking into account the radius growth of aerosol particles due to humidity in the respiratory system. We aim to numerically investigate the impact of hygroscopic effects on the particle behaviour. The air flow is described by the incompressible Navier-Stokes equations, and the aerosol by a Vlasov-type equation involving the air humidity and temperature, both quantities satisfying a convection-diffusion equation with a source term. Conservations properties are checked and an explicit time-marching scheme is proposed. Twodimensional numerical simulations in a branched structure show the influence of the particle size variations on the aerosol dynamics.


2020 ◽  
Vol 8 (2) ◽  
pp. 87 ◽  
Author(s):  
Paran Pourteimouri ◽  
Kourosh Hejazi

An integrated two-dimensional vertical (2DV) model was developed to investigate wave interactions with permeable submerged breakwaters. The integrated model is capable of predicting the flow field in both surface water and porous media on the basis of the extended volume-averaged Reynolds-averaged Navier–Stokes equations (VARANS). The impact of porous medium was considered by the inclusion of the additional terms of drag and inertia forces into conventional Navier–Stokes equations. Finite volume method (FVM) in an arbitrary Lagrangian–Eulerian (ALE) formulation was adopted for discretization of the governing equations. Projection method was utilized to solve the unsteady incompressible extended Navier–Stokes equations. The time-dependent volume and surface porosities were calculated at each time step using the fraction of a grid open to water and the total porosity of porous medium. The numerical model was first verified against analytical solutions of small amplitude progressive Stokes wave and solitary wave propagation in the absence of a bottom-mounted barrier. Comparisons showed pleasing agreements between the numerical predictions and analytical solutions. The model was then further validated by comparing the numerical model results with the experimental measurements of wave propagation over a permeable submerged breakwater reported in the literature. Good agreements were obtained for the free surface elevations at various spatial and temporal scales, velocity fields around and inside the obstacle, as well as the velocity profiles.


2020 ◽  
Vol 8 (11) ◽  
pp. 903
Author(s):  
Sixtine Neuvéglise ◽  
Gaële Perret ◽  
Hassan Smaoui ◽  
François Marin ◽  
Philippe Sergent

This paper studies the behaviour of a quayside floater oscillating in front of a vertical dike. In order to study the floater motion and the impact of the dike on the floater, a linear analytical model based on 2D potential flow theory in intermediate water depth conditions and a numerical model resolving 2D Navier–Stokes equations are developed. Physical tests performed for different floater dimensions in a wave tank are used as references for the analytical and numerical models. The comparison of the results obtained analytically, numerically and experimentally leads to the validity domain of the potential model. A correction of this model is proposed, based on the optimization of the radiated coefficients, and a quadratic drag term is added according to Morison equation. The impact of the different parameters of the system on floater behaviour is considered. Results show that the draft has the most important impact on floater motion.


Author(s):  
K M Guleren ◽  
A Pinarbasi

The main goal of the present work is to analyse the numerical simulation of a centrifugal pump by solving Navier-Stokes equations, coupled with the ‘standard k-∊’ turbulence model. The pump consists of an impeller having five curved blades with nine diffuser vanes. The shaft rotates at 890r/min. Flow characteristics are assumed to be stalled in the appropriate region of flowrate levels of 1.31-2.861/s. Numerical analysis techniques are performed on a commercial FLUENT package program assuming steady, incompressible flow conditions with decreasing flowrate. Under stall conditions the flow in the diffuser passage alternates between outward jetting when the low-pass-filtered pressure is high to a reverse flow when the filtered pressure is low. Being below design conditions, there is a consistent high-speed leakage flow in the gap between the impeller and the diffuser from the exit side of the diffuser to the beginning of the volute. Separation of this leakage flow from the diffuser vane causes the onset of stall. As the flowrate decreases both the magnitude of the leakage within the vaneless part of the pump and reverse flow within a stalled diffuser passage increase. As this occurs, the stall-cell size extends from one to two diffuser passages. Comparisons are made with experimental data and show good agreement.


Author(s):  
Y Wang ◽  
S Komori

A pressure-based finite volume procedure developed previously for incompressible flows is extended to predict the three-dimensional compressible flow within a centrifugal impeller. In this procedure, the general curvilinear coordinate system is used and the collocated grid arrangement is adopted. Mass-averaging is used to close the instantaneous Navier-Stokes equations. The covariant velocity components are used as the main variables for the momentum equations, making the pressure-velocity coupling easier. The procedure is successfully applied to predict various compressible flows from subsonic to supersonic. With the aid of the k-ɛ turbulence model, the flow details within a centrifugal impeller are obtained using the present procedure. Predicted distributions of the meridional velocity and the static pressure are reasonable. Calculated radial velocities and flow angles are favourably compared with the measurements at the exit of the impeller.


Sign in / Sign up

Export Citation Format

Share Document