scholarly journals A Numerical Study of Spray Strips Analysis on Fridsma Hull Form

Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 420
Author(s):  
Samuel ◽  
Andi Trimulyono ◽  
Parlindungan Manik ◽  
Deddy Chrismianto

Spray strips are deflectors added to the hull to reduce the Wetted Surface Area (WSA). The reduced WSA will decrease the total ship drag caused by the deflection of the spray strip installation. The research aimed to predict the function of the spray strip to improve ship performance using Computational Fluid Dynamics (CFD). The numerical approach in this study used the Finite Volume Method (FVM) with the RANS (Reynolds-averaged Navier–Stokes) equation to solve fluid dynamics problems. VOF (Volume of Fluid) was used to model the water and air phases. The results of this study indicated that the number of spray strips would have a significant effect compared to without using a spray strip. Spray strips with three strips could reduce the total resistance by 4.9% at Fr 1.78. Spray strips would increase the total resistance value by 2.1% at low speeds. Spray strips were effective for reducing total resistance at Fr > 1 or the planing mode conditions. The total resistance prediction used three suggestion profiles with the best performance to reduce total resistance by 6.0% at Fr 1.78.

2013 ◽  
Vol 448-453 ◽  
pp. 3847-3850
Author(s):  
Da Li ◽  
Fang Qin Cheng ◽  
Jian Feng Li ◽  
Yun Shan Guan

Despite the widespread use of hydrocyclone in the process of potash ore desliming, its accurate design is often difficult because the feed composition is complicated and the viscosity is high in the brine system. In this study, a numerical approach based on computational fluid dynamics (CFD) was performed to describe the flow field. The numerical simulation of flow pattern in hydrocyclones for potash ore desliming was presented. Some basic information concerning the velocity and pressure distribution is given, and the results can be used as the fundamental basis for its design.


Author(s):  
M. Mansoori ◽  
A. C. Fernandes

This work investigates the hydrodynamic effects of introducing interceptors on fast vessels. Interceptors are vertical flat blades installed at the bottom of the stern vessel. They cause changes in pressure magnitudes around the vessel bottom and especially at the end of the hull where they are located. The pressure variations have an effect on resistance, draft height, and lifting forces which may result in a better control of trim. This work uses a combination of computational fluid dynamics (CFD) and ultrareduced experimental tests. The investigation applies the Reynolds-averaged Navier–Stokes (RANS) equations to model the flow around the ultrareduced model with interceptors with different heights. Our model is analyzed based on a finite-volume method using dynamic mesh. The boat motion is only with two degrees-of-freedom. The results show that the interceptor causes an intense pressure gradient, decreasing the wet surface of the vessel and, quite surprisingly, the resistance. At last, this paper shows that, within a range, a better trim control is possible. The height of the interceptor has an important effect on interceptor efficiency, and it should be especially selected according to the length of the vessel and boundary layer thickness at the transom. The ultrareduced model tests were performed in the Current Channel of the Laboratory of Waves and Current of COPPE/UFRJ (LOC in Portuguese acronym).


2019 ◽  
Vol 40 (5) ◽  
pp. 1021-1039 ◽  
Author(s):  
Khalid M Saqr ◽  
Sherif Rashad ◽  
Simon Tupin ◽  
Kuniyasu Niizuma ◽  
Tamer Hassan ◽  
...  

Despite the plethora of published studies on intracranial aneurysms (IAs) hemodynamic using computational fluid dynamics (CFD), limited progress has been made towards understanding the complex physics and biology underlying IA pathophysiology. Guided by 1733 published papers, we review and discuss the contemporary IA hemodynamics paradigm established through two decades of IA CFD simulations. We have traced the historical origins of simplified CFD models which impede the progress of comprehending IA pathology. We also delve into the debate concerning the Newtonian fluid assumption used to represent blood flow computationally. We evidently demonstrate that the Newtonian assumption, used in almost 90% of studies, might be insufficient to describe IA hemodynamics. In addition, some fundamental properties of the Navier–Stokes equation are revisited in supplementary material to highlight some widely spread misconceptions regarding wall shear stress (WSS) and its derivatives. Conclusively, our study draws a roadmap for next-generation IA CFD models to help researchers investigate the pathophysiology of IAs.


2011 ◽  
Vol 10 (1-2) ◽  
pp. 63
Author(s):  
J. V. Akwa ◽  
A. P. Petry

This paper aims at verifying the influence of using five kinds of stators in the averaged moment and power coefficients of a Savonius wind rotor using computational fluid dynamics (CFD). The analyzed stators have cylindrical shape with two and three openings, one and four deflector blades and walls shaped like a wings. The equations of continuity, Reynolds Averaged Navier-Stokes – RANS and the Eddy Viscosity Model k-ω SST, in its Low-Reynolds approaches, with hybrid near wall treatment; are numerically solved using the commercial software Star-CCM+, based on Finite Volume Method, resulting in the fields of pressure and velocity of the flow and the forces acting on the rotor buckets. The moment and power coefficients are achieved through integration of forces coming from the effects of pressure and viscosity of the wind on the buckets device. The influence of the stators use in the moment and power coefficients is checked by changing the geometry of the device for each simulations series, keeping the Reynolds number based on rotor diameter equal to 433,500. The obtained values for averaged moment and power coefficients indicate that for each type of stator used, there was maximum performance for a given tip speed ratio of rotor. Improvement in performance over the operation without stator was obtained only to the operations using stator with four deflector blades and to the stator with cylindrical shape with three openings. The improvement percentage in performance obtained for the best condition (use of four deflector blades at tip speed ratio equal to 1) is 12% compared to the performance of the rotor operating without stator.


2012 ◽  
Vol 215-216 ◽  
pp. 992-997
Author(s):  
Hong Yuan Su ◽  
Ming Li ◽  
Dong Ping Wang ◽  
Feng Liu

Based on 3D steady and incompressible Navier-Stokes equation and standard k-ε turbulent model, numerical calculation for the aerodynamic properties of EMU (Electric Multiple Units) CRH3 (China Railway High-Speed 3)running in crosswind were carried out by finite volume method. Aerodynamic performances of EMU CRH3 were analyzed and compared, when the EMU was running in different speed and under the crosswinds of different velocity. The research showed that with the change of speed of train and crosswind, the surface pressure and aerodynamic forces altered according to a certain rule. Compared with the drag, the change of lift and lateral force caused by the increase of crosswind were more serious. When the speed of train was constant of 200km/h, 250km/h and 300km/h, the drag of train increased by 26.7%, 20.4% and 19.8% respectively as the speed of crosswind increased from 12.5m/s to 30m/s, the lift of train increased by 340.7%, 331.7% and 337.1% respectively, and the lateral force of train increases by 296.3%, 266.0% and 150.2% respectively. As the speed of crosswind increases, the increase of drag caused by the acceleration of train is more serious than lift and lateral force.


Author(s):  
Nurul Hasan ◽  
Ahmed Oliur Rahman ◽  
Md. Shah Alam

This paper presents a step by step verification and validation process of a vertical round submerged jet into a cylindrical bath. Taking advantage of the axi-symmetric domain, Navier-Stokes equation of primary is solved by finite volume method (FVM) using commercial computational fluid dynamics, CFD (Fluent) software. For verification and to minimise the computational error, step by step grid independence tests were performed. For validation, experimental data was produced using laser Doppler velocimetry (LDV). Among the turbulence model,  SST was found to predict the flow behaviour better than k-e-  realization or RSM models. 


Author(s):  
Ian Torotwa ◽  
Changying Ji

In this study, turbulent flow fields in a baffled vessel stirred by counter-axial flow impeller have been investigated in comparison to the Rushton turbine. The resultant turbulence was numerically predicted using computational fluid dynamics (CFD). Turbulence models were developed in ANSYS Fluent 18.1 solver using the Navier-Stokes equation with the standard k-ε turbulence model. The Multiple Reference Frame (MRF) approach was used to simulate the impeller action in the vertical and horizontal planes of the stirred fluid volume. Velocity profiles generated from the simulations were used to predict and compare the performance of the two designs. To validate the CFD model, the simulation results were compared with experimental results from existing work and a satisfactory agreement was established. It was concluded that the counter-axial flow impeller could provide better turbulence characteristics that would improve the quality of mixing systems.


2014 ◽  
Vol 592-594 ◽  
pp. 1930-1934
Author(s):  
G.V.R. Seshagiri Rao ◽  
V.V. Subbarao ◽  
C. Prabakara Rao

Abstract. This paper presents the results of experimental studies of the noise of marine application pump axial flow fan. Axial flow fan is verified by both geometrical and experimental approaches. This section includes grid system used in geometric simulation, and boundary conditions. In order to know the complicate and complex physical features of an axial flow fan, a commercial computational fluid dynamics code, FLUENT, is utilized to perform the flow field analysis, which solves the Navier–Stokes equation using an amorphous finite volume-method. As a commercial computational fluid dynamics code, FLUENT has been extensively used in many turbo machinery applications. In this paper the noise predicted according to geometrical results will be compare with investigational results.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Author(s):  
Xiaoxu Du ◽  
Huan Wang

The successful operation of an Autonomous Underwater Vehicle (AUV) requires the capability to return to a dock. A number of underwater docking technologies have been proposed and tested in the past. The docking allows the AUV to recharge its batteries, download data and upload new instructions, which is helpful to improve the working time and efficiency. During the underwater docking process, unsteady hydrodynamic interference occurs between the docking device and an AUV. To ensure a successful docking, it is very important that the underwater docking hydrodynamics of AUV is understood. In this paper, numerical simulations based on the computational fluid dynamics (CFD) solutions were carried out for a 1.85m long AUV with maximum 0.2 m in diameter during the docking process. The two-dimensional AUV model without fin and rudder was used in the simulation. The mathematical model based on the Reynolds-averaged Navier-Stokes (RANS) equations was established. The finite volume method (FVM) and the dynamic structured mesh technique were used. SIMPLE algorithm and the k-ε turbulence model in the Descartes coordinates were also adopted. The hydrodynamics characteristics of different docking states were analyzed, such as the different docking velocity, the docking device including baffle or not. The drag coefficients of AUV in the process of docking were computed for various docking conditions, i.e., the AUV moving into the docking in the speed of 1m/s, 2m/s, 5m/s. The results indicate that the drag coefficient increases slowly in the process of AUV getting close to the docking device. When the AUV moves into the docking device, the drag coefficient increases rapidly. Then the drag coefficient decreases rapidly. The drag coefficient decreases with the increase of velocity when AUV enters the docking device. It was also found that the drag coefficient can be effectively reduced by dislodging the baffle of docking device.


Sign in / Sign up

Export Citation Format

Share Document