scholarly journals Black Soldier Fly (Hermetia illucens) Protein Concentrates as a Sustainable Source to Stabilize O/W Emulsions Produced by a Low-Energy High-Throughput Emulsification Technology

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1048
Author(s):  
Junjing Wang ◽  
Morane Jousse ◽  
Jitesh Jayakumar ◽  
Alejandro Fernández-Arteaga ◽  
Silvia de Lamo-Castellví ◽  
...  

There is a pressing need to extend the knowledge on the properties of insect protein fractions to boost their use in the food industry. In this study several techno-functional properties of a black soldier fly (Hermetia illucens) protein concentrate (BSFPC) obtained by solubilization and precipitation at pH 4.0–4.3 were investigated and compared with whey protein isolate (WPI), a conventional dairy protein used to stabilize food emulsions. The extraction method applied resulted in a BSFPC with a protein content of 62.44% (Kp factor 5.36) that exhibited comparable or higher values of emulsifying activity and foamability than WPI for the same concentrations, hence, showing the potential for emulsion and foam stabilization. As for the emulsifying properties, the BSFPC (1% and 2%) showed the capacity to stabilize sunflower and lemon oil-in-water emulsions (20%, 30%, and 40% oil fraction) produced by dynamic membranes of tunable pore size (DMTS). It was proved that BSFPC stabilizes sunflower oil-in-water emulsions similarly to WPI, but with a slightly wider droplet size distribution. As for time stability of the sunflower oil emulsions at 25 °C, it was seen that droplet size distribution was maintained for 1% WPI and 2% BSFPC, while for 1% BSFPC there was a slight increase. For lemon oil emulsions, BSFPC showed better emulsifying performance than WPI, which required to be prepared with a pH 7 buffer for lemon oil fractions of 40%, to balance the decrease in the pH caused by the lemon oil water soluble components. The stability of the emulsions was improved when maintained under refrigeration (4 °C) for both BSFPC and WPI. The results of this work point out the feasibility of using BSFPC to stabilize O/W emulsions using a low energy system.

Author(s):  
Vinícius Morgan ◽  
Cristina Sad ◽  
Andre Constantino ◽  
Rodrigo Azeredo ◽  
Valdemar Lacerda ◽  
...  

2001 ◽  
Vol 67 (3) ◽  
pp. 227-239 ◽  
Author(s):  
P.F. ter Steeg ◽  
G.D. Otten ◽  
M. Alderliesten ◽  
R. de Weijer ◽  
G. Naaktgeboren ◽  
...  

2010 ◽  
Vol 20 (3) ◽  
pp. 227-239 ◽  
Author(s):  
Kuide Qin ◽  
Holger Tank ◽  
S. A. Wilson ◽  
Brandon Downer ◽  
Lei Liu

2009 ◽  
Vol 15 (4) ◽  
pp. 367-373 ◽  
Author(s):  
C. Bengoechea ◽  
M.L. López ◽  
F. Cordobés ◽  
A. Guerrero

Oil-in-water (o/w) emulsions stabilized by egg yolk, with a composition similar to those found in commercial mayonnaises or salad dressings, were processed in a semicontinuous device. This specially designed emulsification device consists of, basically, a vessel provided with an anchor impeller, where the continuous phase was initially placed; a pumping system that controls the addition of the oily phase; a rotor-stator unit, where the major breaking of the oily droplets takes place, and a recirculation system. The design allowed the introduction of a rotational rheometer to obtain viscosity data along the emulsification process. The most important advantages of this in-line emulsification device, when compared to discontinuous emulsification equipment, are the possibilities of recording viscosity data along the process and the higher values for the storage, G', and loss moduli, G'', of the resulting emulsions. The influence of egg yolk concentration, agitation speed, and flow rate over the rheological properties (G', G'') as well as droplet size distribution were investigated. Higher protein concentration, agitation speed and flow rate generally produce emulsions with higher G' and G'' values.


Sign in / Sign up

Export Citation Format

Share Document