scholarly journals Bacterial Community of Grana Padano PDO Cheese and Generical Hard Cheeses: DNA Metabarcoding and DNA Metafingerprinting Analysis to Assess Similarities and Differences

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1826
Author(s):  
Miriam Zago ◽  
Lia Rossetti ◽  
Tommaso Bardelli ◽  
Domenico Carminati ◽  
Nelson Nazzicari ◽  
...  

The microbiota of Protected Designation of Origin (PDO) cheeses plays an essential role in defining their quality and typicity and could be applied to protect these products from counterfeiting. To study the possible role of cheese microbiota in distinguishing Grana Padano (GP) cheese from generical hard cheeses (HC), the microbial structure of 119 GP cheese samples was studied by DNA metabarcoding and DNA metafingerprinting and compared with 49 samples of generical hard cheeses taken from retail. DNA metabarcoding highlighted the presence, as dominant taxa, of Lacticaseibacillus rhamnosus, Lactobacillus helveticus, Streptococcus thermophilus, Limosilactobacillus fermentum, Lactobacillus delbrueckii, Lactobacillus spp., and Lactococcus spp. in both GP cheese and HC. Differential multivariate statistical analysis of metataxonomic and metafingerprinting data highlighted significant differences in the Shannon index, bacterial composition, and species abundance within both dominant and subdominant taxa between the two cheese groups. A supervised Neural Network (NN) classification tool, trained by metagenotypic data, was implemented, allowing to correctly classify GP cheese and HC samples. Further implementation and validation to increase the robustness and improve the predictive capacity of the NN classifier will be needed. Nonetheless, the proposed tool opens interesting perspectives in helping protection and valorization of GP and other PDO cheeses.

1971 ◽  
Vol 34 (2) ◽  
pp. 69-73 ◽  
Author(s):  
Antonieta Gaddi Angeles ◽  
E. H. Marth

The following lactic acid bacteria, when tested with the agar-well method, were able to hydrolyze tributyrin and triolein, but not soybean oil: Streptococcus lactis, Streptococcus cremoris, Streptococcus diacetilactis, Streptococcus thermophilus, Leuconostoc mesenteroides, Pediococcus cerevisiae, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus pentosus, and Lactobacillus brevis. Tributyrin only was hydrolyzed by Lactobacillus helveticus. Some free fatty acids were liberated by L. casei, L. delbrueckii, and S. thermophilus in soymilk (1.9% soybean lipids) and in MRS broth fortified with 2.0% soybean oil during a 14-day period of incubation. Although L. casei and L. delbrueckii were more active in soymilk than was S. thermophilus, they released about 10% of the amount of free fatty acids liberated by Candida lipolytica during a similar incubation period.


2011 ◽  
Vol 2 (4) ◽  
pp. 335-339 ◽  
Author(s):  
N. Karapetkov ◽  
R. Georgieva ◽  
N. Rumyan ◽  
E. Karaivanova

Five lactic acid bacteria (LAB) strains belonging to species Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus delbrueckii subsp. lactis and Streptococcus thermophilus were tested for their susceptibility to 27 antibiotics. The minimum inhibitory concentrations of each antimicrobial were determined using a microdilution test. Among the strains a high susceptibility was detected for most of the cell-wall synthesis inhibitors (penicillins, cefoxitin and vancomycin) and resistance toward inhibitors of DNA synthesis (trimethoprim/sulfonamides and fluoroquinolones). Generally, the Lactobacillus strains were inhibited by antibiotics such as chloramphenicol, erythromycin and tetracycline at breakpoint levels lower or equal to the levels defined by the European Food Safety Authority. Despite the very similar profile of S. thermophilus LC201 to lactobacilli, the detection of resistance toward erythromycin necessitates the performance of additional tests in order to prove the absence of transferable resistance genes.


1971 ◽  
Vol 34 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Antonieta Gaddi Angeles ◽  
E. H. Marth

Soymilk with a protein content similar to that of cow's milk was prepared from soybeans (variety Chippewa 64). Soybeans were washed, soaked until 1 ml of water per gram of beans was absorbed, comminuted with water equivalent to 7.6 times their dry weight, and the mixture filtered through cheese cloth to obtain an aqueous extract free of large particles. Growth rates of 13 species of lactic-acid bacteria in sterile soymilk were generally greater than or comparable to those in cow's milk or Elliker's broth. Acid production in soymilk was not always directly related to growth rates of the organisms. Substantial formation of acid was limited to those bacteria able to utilize the sugars in soymilk, e.g., Streptococcus thermophilus, Lactobacillus delbrueckii, Lactobacillus pentosus, and Leuconostoc mesenteroides. Sources of readily available nitrogen (e.g., protein digests), when added to soymilk, enhanced acid production by S. thermophilus, the Leuconostoc species, and L. pentosus; appeared inhibitory to L. delbrueckii; and had no apparent effect on the other test cultures. Addition of whey powder, glucose, or lactose to soymilk enhanced acid production by Streptococcus lactis, Streptococcus cremoris, Streptococcus diacetilactis, Lactobacillus casei, and Lactobacillus helveticus; whereas addition of sucrose was without benefit. The presence of 0.23–0.25% titratable acid, corresponding to a pH of 5.7, caused coagulation of the sterilized soymilk.


2013 ◽  
Vol 80 (2) ◽  
pp. 694-703 ◽  
Author(s):  
Milda Stuknytė ◽  
Eeva-Christine Brockmann ◽  
Tuomas Huovinen ◽  
Simone Guglielmetti ◽  
Diego Mora ◽  
...  

ABSTRACTSingle-chain variable-fragment antibodies (scFvs) have considerable potential in immunological detection and localization of bacterial surface structures. In this study, synthetic phage-displayed antibody libraries were used to select scFvs against immunologically active S-layer protein ofLactobacillus helveticusMIMLh5. After three rounds of panning, five relevant phage clones were obtained, of which four were specific for the S-layer protein ofL. helveticusMIMLh5 and one was also capable of binding to the S-layer protein ofL. helveticusATCC 15009. All five anti-S-layer scFvs were expressed inEscherichia coliXL1-Blue, and their specificity profiles were characterized by Western blotting. The anti-S-layer scFv PolyH4, with the highest specificity for the S-layer protein ofL. helveticusMIMLh5, was used to detect the S-layer protein in Grana Padano protected-designation-of-origin (PDO) cheese extracts by Western blotting. These results showed promising applications of this monoclonal antibody for the detection of immunomodulatory S-layer protein in dairy (and dairy-based) foods.


2014 ◽  
Vol 20 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Maja Bulatovic ◽  
Marica Rakin ◽  
Ljiljana Mojovic ◽  
Svetlana Nikolic ◽  
Maja Vukasinovic-Sekulic ◽  
...  

The aim of this study was improvement of the performances for the production of whey-based beverages with highly productive strains of Lactobacillus. Individual or mixed culture containing Lactobacillus helveticus ATCC 15009, Lactobacillus delbrueckii ssp. lactis NRRL B-4525 and Streptococcus thermophilus S3 were studied. The scientific hypothesis was that production performances, especially aroma and viable cell count, are positively affected by the strains combination and temperature. Based on the results, beverages obtained by mixed cultures Lb. helveticus ATCC 15009 - S. thermophilus S3 and Lb. delbrueckii ssp. lactis - S. thermophilus S3 had higher aroma values than beverages obtained by individual strains. The symbiosis of tested strains has positive impact on the aroma of produced beverage. In addition, the temperature has significant influence on cell viability during the storage and fermentation dynamic. The beverages produced by mixed cultures Lb. helveticus ATCC 15009 - S. thermophilus S3 and Lb. delbrueckii ssp. lactis - S. thermophilus S3 at 42 oC achieved higher storage stability (19 to 22 days) than beverages produced at 37?C and 45?C (13 to 19 days). Subsequently, at 42 ?C fermentation time for both mixed cultures was 1.5 h shorter, compared to the time achieved at 37?C.


1998 ◽  
Vol 64 (6) ◽  
pp. 2147-2151 ◽  
Author(s):  
Deborah Low ◽  
Jeffrey A. Ahlgren ◽  
Diane Horne ◽  
Donald J. McMahon ◽  
Craig J. Oberg ◽  
...  

ABSTRACT Recent work by our group has shown that an exopolysaccharide (EPS)-producing starter pair, Streptococcus thermophilusMR-1C and Lactobacillus delbrueckii subsp.bulgaricus MR-1R, can significantly increase moisture retention in low-fat mozzarella (D. B. Perry, D. J. McMahon, and C. J. Oberg, J. Dairy Sci. 80:799–805, 1997). The objectives of this study were to determine whether MR-1C, MR-1R, or both of these strains are required for enhanced moisture retention and to establish the role of EPS in this phenomenon. Analysis of low-fat mozzarella made with different combinations of MR-1C, MR-1R, and the non-EPS-producing starter culture strains S. thermophilus TA061 andLactobacillus helveticus LH100 showed that S. thermophilus MR-1C was responsible for the increased cheese moisture level. To investigate the role of the S. thermophilus MR-1C EPS in cheese moisture retention, theepsE gene in this bacterium was inactivated by gene replacement. Low-fat mozzarella made with L. helveticusLH100 plus the non-EPS-producing mutant S. thermophilusDM10 had a significantly lower moisture content than did cheese made with strains LH100 and MR-1C, which confirmed that the MR-1C capsular EPS was responsible for the water-binding properties of this bacterium in cheese. Chemical analysis of the S. thermophilus MR-1C EPS indicated that the polymer has a novel basic repeating unit composed of d-galactose, l-rhamnose, andl-fucose in a ratio of 5:2:1.


2002 ◽  
Vol 57 (9-10) ◽  
pp. 805-810 ◽  
Author(s):  
Ginka I. Frengova ◽  
Emilina D. Simova ◽  
Dora M. Beshkova ◽  
Zhelyasko I. Simov

A Lactobacillus delbrueckii subsp. bulgaricus HP1 strain with high exopolysaccharide activity was selected from among 40 strains of lactic acid bacteria, isolated from kefir grains. By associating the Lactobacillus delbrueckii subsp. bulgaricus HP1 strain with Streptococcus thermophilus T15, Lactococcus lactis subsp. lactis C15, Lactobacillus helveticus MP12. and Sacharomyces cerevisiae A13, a kefir starter was formed. The associated cultivation of the lactobacteria and yeast had a positive effect on the exopolysaccharide activity of Lactobacillus delbrueckii subsp. bulgaricus HP1. The maximum exopolysaccharide concentration of the starter culture exceeded the one by the Lactobacillus delbrueckii subsp. bulgaricus HP1 monoculture by approximately 1.7 times, and the time needed to reach the maximum concentration (824.3 mg exopolysacharides/l) was shortened by 6 h. The monomer composition of the exopolysaccharides from the kefir starter culture was represented by glucose and galactose in a 1.0:0.94 ratio, which proves that the polymer synthesized is kefiran.


Sign in / Sign up

Export Citation Format

Share Document