scholarly journals Fractional-Order Models for Biochemical Processes

2020 ◽  
Vol 4 (2) ◽  
pp. 12 ◽  
Author(s):  
Eva-H. Dulf ◽  
Dan C. Vodnar ◽  
Alex Danku ◽  
Cristina-I. Muresan ◽  
Ovidiu Crisan

Biochemical processes present complex mechanisms and can be described by various computational models. Complex systems present a variety of problems, especially the loss of intuitive understanding. The present work uses fractional-order calculus to obtain mathematical models for erythritol and mannitol synthesis. The obtained models are useful for both prediction and process optimization. The models present the complex behavior of the process due to the fractional order, without losing the physical meaning of gain and time constants. To validate each obtained model, the simulation results were compared with experimental data. In order to highlight the advantages of fractional-order models, comparisons with the corresponding integer-order models are presented.

Author(s):  
Riccardo Caponetto ◽  
Salvatore Graziani ◽  
Emanuele Murgano

AbstractIn the paper, a fractional-order RLC circuit is presented. The circuit is realized by using a fractional-order capacitor. This is realized by using carbon black dispersed in a polymeric matrix. Simulation results are compared with the experimental data, confirming the suitability of applying this new device in the circuital implementation of fractional-order systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Wang ◽  
Yuangui Zhou ◽  
Jianyi Xue ◽  
Delan Zhu

We focus on the synchronization of a wide class of four-dimensional (4-D) chaotic systems. Firstly, based on the stability theory in fractional-order calculus and sliding mode control, a new method is derived to make the synchronization of a wide class of fractional-order chaotic systems. Furthermore, the method guarantees the synchronization between an integer-order system and a fraction-order system and the synchronization between two fractional-order chaotic systems with different orders. Finally, three examples are presented to illustrate the effectiveness of the proposed scheme and simulation results are given to demonstrate the effectiveness of the proposed method.


Author(s):  
Aleksey Malahanov

A variant of the implementation of the behavioral model of a linear voltage stabilizer in the Spice language is presented. The results of modeling in static mode are presented. The simulation results are compared with experimental data and technical description of the chip manufacturer.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


2021 ◽  
Vol 143 ◽  
pp. 109913
Author(s):  
Zhihua Li ◽  
Guangyu Dan ◽  
Vikram Tammana ◽  
Scott Johnson ◽  
Zheng Zhong ◽  
...  

Author(s):  
Adam Barylski ◽  
Mariusz Deja

Silicon wafers are the most widely used substrates for fabricating integrated circuits. A sequence of processes is needed to turn a silicon ingot into silicon wafers. One of the processes is flattening by lapping or by grinding to achieve a high degree of flatness and parallelism of the wafer [1, 2, 3]. Lapping can effectively remove or reduce the waviness induced by preceding operations [2, 4]. The main aim of this paper is to compare the simulation results with lapping experimental data obtained from the Polish producer of silicon wafers, the company Cemat Silicon from Warsaw (www.cematsil.com). Proposed model is going to be implemented by this company for the tool wear prediction. Proposed model can be applied for lapping or grinding with single or double-disc lapping kinematics [5, 6, 7]. Geometrical and kinematical relations with the simulations are presented in the work. Generated results for given workpiece diameter and for different kinematical parameters are studied using models programmed in the Matlab environment.


2010 ◽  
Vol 63 (3) ◽  
pp. 562-569 ◽  
Author(s):  
Xiaohong Joe Zhou ◽  
Qing Gao ◽  
Osama Abdullah ◽  
Richard L. Magin

Sign in / Sign up

Export Citation Format

Share Document