scholarly journals Comparative Chromosome Mapping of Musk Ox and the X Chromosome among Some Bovidae Species

Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 857 ◽  
Author(s):  
Proskuryakova ◽  
Kulemzina ◽  
Perelman ◽  
Yudkin ◽  
Lemskaya ◽  
...  

: Bovidae, the largest family in Pecora infraorder, are characterized by a striking variability in diploid number of chromosomes between species and among individuals within a species. The bovid X chromosome is also remarkably variable, with several morphological types in the family. Here we built a detailed chromosome map of musk ox (Ovibos moschatus), a relic species originating from Pleistocene megafauna, with dromedary and human probes using chromosome painting. We trace chromosomal rearrangements during Bovidae evolution by comparing species already studied by chromosome painting. The musk ox karyotype differs from the ancestral pecoran karyotype by six fusions, one fission, and three inversions. We discuss changes in pecoran ancestral karyotype in the light of new painting data. Variations in the X chromosome structure of four bovid species nilgai bull (Boselaphus tragocamelus), saola (Pseudoryx nghetinhensis), gaur (Bos gaurus), and Kirk’s Dikdik (Madoqua kirkii) were further analyzed using 26 cattle BAC-clones. We found the duplication on the X in saola. We show main rearrangements leading to the formation of four types of bovid X: Bovinae type with derived cattle subtype formed by centromere reposition and Antilopinae type with Caprini subtype formed by inversion in XSB3.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Talita Fernanda Augusto Ribas ◽  
Julio Cesar Pieczarka ◽  
Darren K. Griffin ◽  
Lucas G. Kiazim ◽  
Cleusa Yoshiko Nagamachi ◽  
...  

Abstract Background Thamnophilidae birds are the result of a monophyletic radiation of insectivorous Passeriformes. They are a diverse group of 225 species and 45 genera and occur in lowlands and lower montane forests of Neotropics. Despite the large degree of diversity seen in this family, just four species of Thamnophilidae have been karyotyped with a diploid number ranging from 76 to 82 chromosomes. The karyotypic relationships within and between Thamnophilidae and another Passeriformes therefore remain poorly understood. Recent studies have identified the occurrence of intrachromosomal rearrangements in Passeriformes using in silico data and molecular cytogenetic tools. These results demonstrate that intrachromosomal rearrangements are more common in birds than previously thought and are likely to contribute to speciation events. With this in mind, we investigate the apparently conserved karyotype of Willisornis vidua, the Xingu Scale-backed Antbird, using a combination of molecular cytogenetic techniques including chromosome painting with probes derived from Gallus gallus (chicken) and Burhinus oedicnemus (stone curlew), combined with Bacterial Artificial Chromosome (BAC) probes derived from the same species. The goal was to investigate the occurrence of rearrangements in an apparently conserved karyotype in order to understand the evolutionary history and taxonomy of this species. In total, 78 BAC probes from the Gallus gallus and Taeniopygia guttata (the Zebra Finch) BAC libraries were tested, of which 40 were derived from Gallus gallus macrochromosomes 1–8, and 38 from microchromosomes 9–28. Results The karyotype is similar to typical Passeriformes karyotypes, with a diploid number of 2n = 80. Our chromosome painting results show that most of the Gallus gallus chromosomes are conserved, except GGA-1, 2 and 4, with some rearrangements identified among macro- and microchromosomes. BAC mapping revealed many intrachromosomal rearrangements, mainly inversions, when comparing Willisornis vidua karyotype with Gallus gallus, and corroborates the fissions revealed by chromosome painting. Conclusions Willisornis vidua presents multiple chromosomal rearrangements despite having a supposed conservative karyotype, demonstrating that our approach using a combination of FISH tools provides a higher resolution than previously obtained by chromosome painting alone. We also show that populations of Willisornis vidua appear conserved from a cytogenetic perspective, despite significant phylogeographic structure.


2018 ◽  
Vol 12 (2) ◽  
pp. 163-170
Author(s):  
Tiago Marafiga Degrandi ◽  
Jean Carlo Pedroso de Oliveira ◽  
Amanda de Araújo Soares ◽  
Mario Angel Ledesma ◽  
Iris Hass ◽  
...  

Kingfishers comprise about 115 species of the family Alcedinidae, and are an interesting group for cytogenetic studies, for they are among birds with most heterogeneous karyotypes. However, cytogenetics knowledge in Kingfishers is extremely limited. Thus, the aim of this study was to describe the karyotype structure of the Ringed Kingfisher (Megaceryletorquata Linnaeus, 1766) and Green Kingfisher (Chloroceryleamericana Gmelin, 1788) and also compare them with related species in order to identify chromosomal rearrangements. The Ringed Kingfisher presented 2n = 84 and the Green Kingfisher had 2n = 94. The increase of the chromosome number in the Green Kingfisher possibly originated by centric fissions in macrochromosomes. In addition, karyotype comparisons in Alcedinidae show a heterogeneity in the size and morphology of macrochromosomes, and chromosome numbers ranging from 2n = 76 to 132. Thus, it is possible chromosomal fissions in macrochromosomes resulted in the increase of the diploid number, whereas chromosome fusions have originated the karyotypes with low diploid number.


2019 ◽  
Vol 159 (1) ◽  
pp. 32-38
Author(s):  
Igor C.A. Seligmann ◽  
Ivanete O. Furo ◽  
Michelly S. dos Santos ◽  
Marcella M. Tagliarini ◽  
Cristiane C.D. Araujo ◽  
...  

Despite the variation observed in the diploid chromosome number of storks (Ciconiiformes, Ciconiidae), from 2n = 52 to 2n = 78, most reports have relied solely on analyses by conventional staining. As most species have similar macrochromosomes, some authors propose that karyotype evolution involves mainly fusions between microchromosomes, which are highly variable in species with different diploid numbers. In order to verify this hypothesis, in this study, the karyotypes of 2 species of storks from South America with different diploid numbers, the jabiru (Jabiru mycteria, 2n = 56) and the maguary stork (Ciconia maguary, 2n = 72), were analyzed by chromosome painting using whole chromosome probes from the macrochromosomes of Gallus gallus (GGA) and Leucopternis albicollis (LAL). The results revealed that J. mycteria and C. maguary share synteny within chromosome pairs 1-9 and Z. The syntenies to the macrochromosomes of G. gallus are conserved, except for GGA4, which is homologous to 2 different pairs, as in most species of birds. A fusion of GGA8 and GGA9 was observed in both species. Additionally, chromosomes corresponding to GGA4p and GGA6 are fused to other segments that did not hybridize to any of the macrochromosome probes used, suggesting that these segments correspond to microchromosomes. Hence, our data corroborate the proposed hypothesis that karyotype evolution is based on fusions involving microchromosomes. In view of the morphological constancy of the macrochromosome pairs in most Ciconiidae, we propose a putative ancestral karyotype for the family, including the GGA8/GGA9 fusion, and a diploid number of 2n = 78. The use of probes for microchromosome pairs should be the next step in identifying other synapomorphies that may help to clarify the phylogeny of this family.


1989 ◽  
Vol 67 (5) ◽  
pp. 1155-1158 ◽  
Author(s):  
Daniel M. Desaulniers ◽  
W. A. King ◽  
Janice E. Rowell ◽  
Peter F. Flood

The muskox (Ovibos moschatus), a member of the family Bovidae, has 48 chromosomes consisting of 12 biarmed and 34 acrocentric autosomes, an acrocentric X chromosome, and a small metacentric Y chromosome. To obtain more information about this species, chromosome preparations from cultured lymphocytes were R-banded, C-banded, or stained with silver nitrate. R-banding was sufficient to identify individual chromosomes. C-banding revealed prominent centromeric bands on all acrocentric chromosomes and very faint staining of the centromeric regions of the biarmed chromosomes. This pattern has been observed in other bovids, such as sheep and water buffalo, which also have biarmed and acrocentric chromosomes. Silver nitrate staining revealed a per metaphase average of 5.23 nucleolus organizer regions, the chromosomal sites of rRNA genes. The nucleolus organizer regions were located on the ends of the long arm of three pairs of submetacentric and two pairs of acrocentric autosomes. Similar numbers of terminally located nucleolus organizer regions have been observed in other bovids such as cattle, sheep, and goats. These results parallel those obtained in other members of the family and emphasize the general cytogenetic similarity within the Bovidae.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Melquizedec Luiz Silva Pinheiro ◽  
Cleusa Yoshiko Nagamachi ◽  
Talita Fernanda Augusto Ribas ◽  
Cristovam Guerreiro Diniz ◽  
Patricia Caroline Mary O´Brien ◽  
...  

Abstract Background The Scolopacidae family (Suborder Scolopaci, Charadriiformes) is composed of sandpipers and snipes; these birds are long-distance migrants that show great diversity in their behavior and habitat use. Cytogenetic studies in the Scolopacidae family show the highest diploid numbers for order Charadriiformes. This work analyzes for the first time the karyotype of Actitis macularius by classic cytogenetics and chromosome painting. Results The species has a diploid number of 92, composed mostly of telocentric pairs. This high 2n is greater than the proposed 80 for the avian ancestral putative karyotype (a common feature among Scolopaci), suggesting that fission rearrangements have formed smaller macrochromosomes and microchromosomes. Fluorescence in situ hybridization using Burhinus oedicnemus whole chromosome probes confirmed the fissions in pairs 1, 2, 3, 4 and 6 of macrochromosomes. Conclusion Comparative analysis with other species of Charadriiformes studied by chromosome painting together with the molecular phylogenies for the order allowed us to raise hypotheses about the chromosomal evolution in suborder Scolopaci. From this, we can establish a clear idea of how chromosomal evolution occurred in this suborder.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Marcelo Razera Baruffi ◽  
Deise Helena de Souza ◽  
Rosana Aparecida Bicudo da Silva ◽  
Ester Silveira Ramos ◽  
Danilo Moretti-Ferreira

Balanced X-autosome translocations are rare, and female carriers are a clinically heterogeneous group of patients, with phenotypically normal women, history of recurrent miscarriage, gonadal dysfunction, X-linked disorders or congenital abnormalities, and/or developmental delay. We investigated a patient with ade novoX;19 translocation. The six-year-old girl has been evaluated due to hyperactivity, social interaction impairment, stereotypic and repetitive use of language with echolalia, failure to follow parents/caretakers orders, inconsolable outbursts, and persistent preoccupation with parts of objects. The girl has normal cognitive function. Her measurements are within normal range, and no other abnormalities were found during physical, neurological, or dysmorphological examinations. Conventional cytogenetic analysis showed ade novobalanced translocation, with the karyotype 46,X,t(X;19)(p21.2;q13.4). Replication banding showed a clear preference for inactivation of the normal X chromosome. The translocation was confirmed by FISH and Spectral Karyotyping (SKY). Although abnormal phenotypes associated withde novobalanced chromosomal rearrangements may be the result of disruption of a gene at one of the breakpoints, submicroscopic deletion or duplication, or a position effect, X; autosomal translocations are associated with additional unique risk factors including X-linked disorders, functional autosomal monosomy, or functional X chromosome disomy resulting from the complex X-inactivation process.


2018 ◽  
Vol 29 (22) ◽  
pp. 2616-2621 ◽  
Author(s):  
Barbara J. Meyer

Determining sex is a binary developmental decision that most metazoans must make. Like many organisms, Caenorhabditis elegans specifies sex (XO male or XX hermaphrodite) by tallying X-chromosome number. We dissected this precise counting mechanism to determine how tiny differences in concentrations of signals are translated into dramatically different developmental fates. Determining sex by counting chromosomes solved one problem but created another—an imbalance in X gene products. We found that nematodes compensate for the difference in X-chromosome dose between sexes by reducing transcription from both hermaphrodite X chromosomes. In a surprising feat of evolution, X-chromosome regulation is functionally related to a structural problem of all mitotic and meiotic chromosomes: achieving ordered compaction of chromosomes before segregation. We showed the dosage compensation complex is a condensin complex that imposes a specific three-­dimensional architecture onto hermaphrodite X chromosomes. It also triggers enrichment of histone modification H4K20me1. We discovered the machinery and mechanism underlying H4K20me1 enrichment and demonstrated its pivotal role in regulating higher-order X-chromosome structure and gene expression.


1998 ◽  
Vol 83 (3-4) ◽  
pp. 182-192 ◽  
Author(s):  
W.G. Nash ◽  
J. Wienberg ◽  
M.A. Ferguson-Smith ◽  
J.C. Menninger ◽  
S.J. O’Brien

Paleobiology ◽  
1975 ◽  
Vol 1 (2) ◽  
pp. 175-188 ◽  
Author(s):  
Neil B. Todd

Evidence is presented that primitive artiodactyls had a diploid number of 14. The higher diploid numbers of most living artiodactyls are interpreted as resulting from karyotypic fissioning at the times of past adaptive radiations. The fossil record appears to support this contention.An evolutionary sequence of unusual X chromosome transformations has been deduced from the differences that exist among extant species. From these, and from interrelationships of karyotypes, certain phylogenetic revisions are suggested.


1968 ◽  
pp. 177-179
Author(s):  
T. C. Hsu ◽  
Kurt Benirschke
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document