scholarly journals Landscape Genomics of a Widely Distributed Snake, Dolichophis caspius (Gmelin, 1789) across Eastern Europe and Western Asia

Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1218
Author(s):  
Sarita Mahtani-Williams ◽  
William Fulton ◽  
Amelie Desvars-Larrive ◽  
Sara Lado ◽  
Jean Pierre Elbers ◽  
...  

Across the distribution of the Caspian whipsnake (Dolichophis caspius), populations have become increasingly disconnected due to habitat alteration. To understand population dynamics and this widespread but locally endangered snake’s adaptive potential, we investigated population structure, admixture, and effective migration patterns. We took a landscape-genomic approach to identify selected genotypes associated with environmental variables relevant to D. caspius. With double-digest restriction-site associated DNA (ddRAD) sequencing of 53 samples resulting in 17,518 single nucleotide polymorphisms (SNPs), we identified 8 clusters within D. caspius reflecting complex evolutionary patterns of the species. Estimated Effective Migration Surfaces (EEMS) revealed higher-than-average gene flow in most of the Balkan Peninsula and lower-than-average gene flow along the middle section of the Danube River. Landscape genomic analysis identified 751 selected genotypes correlated with 7 climatic variables. Isothermality correlated with the highest number of selected genotypes (478) located in 41 genes, followed by annual range (127) and annual mean temperature (87). We conclude that environmental variables, especially the day-to-night temperature oscillation in comparison to the summer-to-winter oscillation, may have an important role in the distribution and adaptation of D. caspius.

2019 ◽  
Vol 190 (1) ◽  
pp. 65-78 ◽  
Author(s):  
Kin Onn Chan ◽  
Rafe M Brown

Abstract The interplay between environmental attributes and evolutionary processes can provide valuable insights into how biodiversity is generated, partitioned and distributed. This study investigates the role of spatial, environmental and historical factors that could potentially drive diversification and shape genetic variation in Malaysian torrent frogs. Torrent frogs are ecologically conserved, and we hypothesize that this could impose tight constraints on dispersal routes, gene flow and consequently genetic structure. Moreover, levels of gene flow were shown to vary among populations from separate mountain ranges, indicating that genetic differentiation could be influenced by landscape features. Using genome-wide single nucleotide polymorphisms, in conjunction with landscape variables derived from Geographic Information Systems, we performed distance-based redundancy analyses and variance partitioning to disentangle the effects of isolation-by-distance (IBD), isolation-by-resistance (IBR) and isolation-by-colonization (IBC). Our results demonstrated that IBR contributed minimally to genetic variation. Intraspecific population structure can be largely attributed to IBD, whereas interspecific diversification was primarily driven by IBC. We also detected two distinct population bottlenecks, indicating that speciation events were likely driven by vicariance or founder events.


2020 ◽  
Author(s):  
Thomas L Schmidt ◽  
T. Swan ◽  
Jessica Chung ◽  
Stephan Karl ◽  
Samuel Demok ◽  
...  

AbstractPopulation genomic approaches can characterise dispersal across a single generation through to many generations in the past, bridging the gap between individual movement and intergenerational gene flow. These approaches are particularly useful when investigating dispersal in recently altered systems, where they provide a way of inferring long-distance dispersal between newly established populations and their interactions with existing populations. Human-mediated biological invasions represent such altered systems which can be investigated with appropriate study designs and analyses. Here we apply temporally-restricted sampling and a range of population genomic approaches to investigate dispersal in a 2004 invasion of Aedes albopictus (the Asian tiger mosquito) in the Torres Strait Islands (TSI) of Australia. We sampled mosquitoes from 13 TSI villages simultaneously and genotyped 373 mosquitoes at genome-wide single nucleotide polymorphisms (SNPs): 331 from the TSI, 36 from Papua New Guinea (PNG), and 4 incursive mosquitoes detected in uninvaded regions. Within villages, spatial genetic structure varied substantially but overall displayed isolation by distance and a neighbourhood size of 232–577. Close kin dyads revealed recent movement between islands 31–203 km apart, and deep learning inferences showed incursive Ae. albopictus had travelled to uninvaded regions from both adjacent and non-adjacent islands. Private alleles and a coancestry matrix indicated direct gene flow from PNG into nearby islands. Outlier analyses also detected four linked alleles introgressed from PNG, with the alleles surrounding 12 resistance-associated cytochrome P450 genes. By treating dispersal as both an intergenerational process and a set of discrete events, we describe a highly interconnected invasive system.


2017 ◽  
Author(s):  
H. Bradley Shaffer ◽  
Evan McCartney-Melstad ◽  
Peter L. Ralph ◽  
Gideon Bradburd ◽  
Erik Lundgren ◽  
...  

The California Department of Fish and Wildlife (CDFW) provided research funds to study the conservation genomics and landscape genomics of the Mojave desert tortoise, Gopherus agassizii, in response to the Desert Renewable Energy Conservation Plan (DRECP). To do this, we consolidated tissue samples of the desert tortoise from across the species range within California and southern Nevada, generated a DNA dataset consisting of full genomes of 270 tortoises, and analyzed the way in which the environment of the desert tortoise has determined modern patterns of relatedness and genetic diversity across the landscape. Here we present the implications of these results for the conservation and landscape genomics of the desert tortoise. Our work strongly indicates that several well-defined genetic groups exist within the species, including a primary north-south genetic discontinuity at the Ivanpah Valley and another separating western from eastern Mojave samples. We also use existing desert tortoise habitat modeling data with a novel extension of genetic "resistance distance" using geographic maps of continuous space to predict the relative impacts of five proposed development alternatives within the DRECP and rank them with respect to their likely impacts on desert tortoise gene flow and connectivity in the Mojave. Finally, we analyzed the impacts of each of the 214 distinct proposed development area "chunks", derived from the proposed development polygons, and ranked each chunk in terms of its range-wide impacts on desert tortoise gene flow.


2021 ◽  
Vol 118 (10) ◽  
pp. e2016900118
Author(s):  
Ian R. MacLachlan ◽  
Tegan K. McDonald ◽  
Brandon M. Lind ◽  
Loren H. Rieseberg ◽  
Sam Yeaman ◽  
...  

Locally adapted temperate tree populations exhibit genetic trade-offs among climate-related traits that can be exacerbated by selective breeding and are challenging to manage under climate change. To inform climatically adaptive forest management, we investigated the genetic architecture and impacts of selective breeding on four climate-related traits in 105 natural and 20 selectively bred lodgepole pine populations from western Canada. Growth, cold injury, growth initiation, and growth cessation phenotypes were tested for associations with 18,600 single-nucleotide polymorphisms (SNPs) in natural populations to identify “positive effect alleles” (PEAs). The effects of artificial selection for faster growth on the frequency of PEAs associated with each trait were quantified in breeding populations from different climates. Substantial shifts in PEA proportions and frequencies were observed across many loci after two generations of selective breeding for height, and responses of phenology-associated PEAs differed strongly among climatic regions. Extensive genetic overlap was evident among traits. Alleles most strongly associated with greater height were often associated with greater cold injury and delayed phenology, although it is unclear whether potential trade-offs arose directly from pleiotropy or indirectly via genetic linkage. Modest variation in multilocus PEA frequencies among populations was associated with large phenotypic differences and strong climatic gradients, providing support for assisted gene flow polices. Relationships among genotypes, phenotypes, and climate in natural populations were maintained or strengthened by selective breeding. However, future adaptive phenotypes and assisted gene flow may be compromised if selective breeding further increases the PEA frequencies of SNPs involved in adaptive trade-offs among climate-related traits.


2017 ◽  
Author(s):  
W. David Hill ◽  
Ruben C. Arslan ◽  
Charley Xia ◽  
Michelle Luciano ◽  
Carmen Amador ◽  
...  

AbstractPedigree-based analyses of intelligence have reported that genetic differences account for 50-80% of the phenotypic variation. For personality traits these effects are smaller, with 34-48% of the variance being explained by genetic differences. However, molecular genetic studies using unrelated individuals typically report a heritability estimate of around 30% for intelligence and between 0% and 15% for personality variables. Pedigree-based estimates and molecular genetic estimates may differ because current genotyping platforms are poor at tagging causal variants, variants with low minor allele frequency, copy number variants, and structural variants. Using ∼20 000 individuals in the Generation Scotland family cohort genotyped for ∼700 000 single nucleotide polymorphisms (SNPs), we exploit the high levels of linkage disequilibrium (LD) found in members of the same family to quantify the total effect of genetic variants that are not tagged in GWASs of unrelated individuals. In our models, genetic variants in low LD with genotyped SNPs explain over half of the genetic variance in intelligence, education, and neuroticism. By capturing these additional genetic effects our models closely approximate the heritability estimates from twin studies for intelligence and education, but not for neuroticism and extraversion. We then replicated our finding using imputed molecular genetic data from unrelated individuals to show that ∼50% of differences in intelligence, and ∼40% of the differences in education, can be explained by genetic effects when a larger number of rare SNPs are included. From an evolutionary genetic perspective, a substantial contribution of rare genetic variants to individual differences in intelligence and education is consistent with mutation-selection balance.


2021 ◽  
Author(s):  
Scott T O’Donnell ◽  
Sorel T Fitz-Gibbon ◽  
Victoria L Sork

Abstract Ancient introgression can be an important source of genetic variation that shapes the evolution and diversification of many taxa. Here, we estimate the timing, direction and extent of gene flow between two distantly related oak species in the same section (Quercus sect. Quercus). We estimated these demographic events using genotyping by sequencing data (GBS), which generated 25,702 single nucleotide polymorphisms (SNPs) for 24 individuals of California scrub oak (Quercus berberidifolia) and 23 individuals of Engelmann oak (Q. engelmannii). We tested several scenarios involving gene flow between these species using the diffusion approximation-based population genetic inference framework and model-testing approach of the Python package DaDi. We found that the most likely demographic scenario includes a bottleneck in Q. engelmannii that coincides with asymmetric gene flow from Q. berberidifolia into Q. engelmannii. Given that the timing of this gene flow coincides with the advent of a Mediterranean-type climate in the California Floristic Province, we propose that changing precipitation patterns and seasonality may have favored the introgression of climate-associated genes from the endemic into the non-endemic California oak.


2020 ◽  
Vol 10 (9) ◽  
pp. 3061-3070 ◽  
Author(s):  
Marja E Heikkinen ◽  
Minna Ruokonen ◽  
Thomas A White ◽  
Michelle M Alexander ◽  
İslam Gündüz ◽  
...  

Abstract Hybridization has frequently been observed between wild and domestic species and can substantially impact genetic diversity of both counterparts. Geese show some of the highest levels of interspecific hybridization across all bird orders, and two of the goose species in the genus Anser have been domesticated providing an excellent opportunity for a joint study of domestication and hybridization. Until now, knowledge of the details of the goose domestication process has come from archaeological findings and historical writings supplemented with a few studies based on mitochondrial DNA. Here, we used genome-wide markers to make the first genome-based inference of the timing of European goose domestication. We also analyzed the impact of hybridization on the genome-wide genetic variation in current populations of the European domestic goose and its wild progenitor: the graylag goose (Anser anser). Our dataset consisted of 58 wild graylags sampled around Eurasia and 75 domestic geese representing 14 breeds genotyped for 33,527 single nucleotide polymorphisms. Demographic reconstruction and clustering analysis suggested that divergence between wild and domestic geese around 5,300 generations ago was followed by long-term genetic exchange, and that graylag populations have 3.2–58.0% admixture proportions with domestic geese, with distinct geographic patterns. Surprisingly, many modern European breeds share considerable (> 10%) ancestry with the Chinese domestic geese that is derived from the swan goose Anser cygnoid. We show that the domestication process can progress despite continued and pervasive gene flow from the wild form.


The Auk ◽  
2000 ◽  
Vol 117 (2) ◽  
pp. 427-444 ◽  
Author(s):  
Gene D. Sattler ◽  
Michael J. Braun

AbstractWe studied hybridization and introgression between Black-capped (Poecile atricapillus) and Carolina (P. carolinensis) chickadees along two transects in the Appalachians using four genetic markers and multivariate analysis of morphology. Genetic data revealed that at least 58% of the birds in the center of each transect were of mixed ancestry and that recombinant genotypes predominated among hybrids, demonstrating that hybridization is frequent and that many hybrids are fertile. Genetic clines generally were steep and coincident in position, but introgression was evident well beyond the range interface. Introgression was higher at the one autosomal locus surveyed than in mitochondrial DNA or in two sex-linked markers, suggesting that the hybrid zone is a conduit for gene flow between the two forms at some loci. On a broad scale, morphometric variation was concordant with genetic variation. Clines in morphological variation based on principal components (PC) scores were steep and coincident with genetic clines. Also, a strong correlation within a population between PC scores and an individual's genetic makeup suggested that a large amount of morphological variation was genetically determined. However, morphological analysis indicated that hybrids were uncommon on one transect, whereas genetic data clearly showed that they were common on both. In addition, patterns of morphological variation were equivocal regarding introgression across the hybrid zone. Thus, genetic data provided a complementary and more detailed assessment of hybridization, largely due to the discrete nature of genetic variation. Genetic markers are useful in understanding hybridization and introgression, but diagnostic markers may underestimate average gene flow if selection against hybrids maintains steep clines at diagnostic loci. To gain a clearer picture of the genome-wide effects of hybridization, a much larger number of loci must be assayed, including non-diagnostic ones.


2009 ◽  
Vol 77 (9) ◽  
pp. 4161-4167 ◽  
Author(s):  
L. S. Burall ◽  
A. Rodolakis ◽  
A. Rekiki ◽  
G. S. A. Myers ◽  
P. M. Bavoil

ABSTRACT Comparative genomic analysis of a wild-type strain of the ovine pathogen Chlamydia abortus and its nitrosoguanidine-induced, temperature-sensitive, virulence-attenuated live vaccine derivative identified 22 single nucleotide polymorphisms unique to the mutant, including nine nonsynonymous mutations, one leading to a truncation of pmpG, which encodes a polymorphic membrane protein, and two intergenic mutations potentially affecting promoter sequences. Other nonsynonymous mutations mapped to a pmpG pseudogene and to predicted coding sequences encoding a putative lipoprotein, a sigma-54-dependent response regulator, a PhoH-like protein, a putative export protein, two tRNA synthetases, and a putative serine hydroxymethyltransferase. One of the intergenic mutations putatively affects transcription of two divergent genes encoding pyruvate kinase and a putative SOS response nuclease, respectively. These observations suggest that the temperature-sensitive phenotype and associated virulence attenuation of the vaccine strain result from disrupted metabolic activity due to altered pyruvate kinase expression and/or alteration in the function of one or more membrane proteins, most notably PmpG and a putative lipoprotein.


Sign in / Sign up

Export Citation Format

Share Document