scholarly journals A New Pathogenic Variant in POU3F4 Causing Deafness Due to an Incomplete Partition of the Cochlea Paved the Way for Innovative Surgery

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 613
Author(s):  
Ahmet M. Tekin ◽  
Marco Matulic ◽  
Wim Wuyts ◽  
Masoud Zoka Assadi ◽  
Griet Mertens ◽  
...  

Incomplete partition type III (IP-III) is a relatively rare inner ear malformation that has been associated with a POU3F4 gene mutation. The IP-III anomaly is mainly characterized by incomplete separation of the modiolus of the cochlea from the internal auditory canal. We describe a 71-year-old woman with profound sensorineural hearing loss diagnosed with an IP-III of the cochlea that underwent cochlear implantation. Via targeted sequencing with a non-syndromic gene panel, we identified a heterozygous c.934G > C p. (Ala31Pro) pathogenic variant in the POU3F4 gene that has not been reported previously. IP-III of the cochlea is challenging for cochlear implant surgery for two main reasons: liquor cerebrospinalis gusher and electrode misplacement. Surgically, it may be better to opt for a shorter array because it is less likely for misplacement with the electrode in a false route. Secondly, the surgeon has to consider the insertion angles of cochlear access very strictly to avoid misplacement along the inner ear canal. Genetic results in well describes genotype-phenotype correlations are a strong clinical tool and as in this case guided surgical planning and robotic execution.

2018 ◽  
Vol 45 (2) ◽  
pp. 351-357 ◽  
Author(s):  
Yoshitaka Takanashi ◽  
Tetsuaki Kawase ◽  
Yasuko Tatewaki ◽  
Jun Suzuki ◽  
Izumi Yahata ◽  
...  

2020 ◽  
Vol 134 (6) ◽  
pp. 509-518
Author(s):  
E Tahir ◽  
M D Bajin ◽  
S Jafarov ◽  
M Ö Yıldırım ◽  
B Ç Çınar ◽  
...  

AbstractObjectiveTo determine the prevalence and distribution of inner-ear malformations in congenital single-sided deafness cases, as details of malformation type are crucial for disease prognosis and management.MethodsA retrospective study was conducted of 90 patients aged under 16 years with congenital single-sided deafness. Radiological findings were evaluated using computed tomography and magnetic resonance imaging. Inner-ear malformations were identified and cochlear nerve status was determined in affected ears.ResultsOut of 90 ears, 42 (46.7 per cent) were found to have inner-ear malformation. Isolated cochlear aperture stenosis was the most common anomaly (n = 18, 20 per cent), followed by isolated cochlear aperture atresia (n = 11, 12.2 per cent) and cochlear hypoplasia (n = 7, 7.8 per cent). Cochlear nerve deficiency was encountered in 41 ears (45.6 per cent). The internal auditory canal was also stenotic in 49 ears (54.4 per cent).ConclusionInner-ear malformations, especially cochlear aperture anomalies, are involved in the aetiology of single-sided deafness more than expected. The cause of single-sided deafness differs greatly between congenital and adult-onset cases. All children with single-sided deafness should undergo radiological evaluation, as the prognosis and management, as well as the aetiology, may be significantly influenced by inner-ear malformation type.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anandhan Dhanasingh ◽  
Daniel Erpenbeck ◽  
Masoud Zoka Assadi ◽  
Úna Doyle ◽  
Peter Roland ◽  
...  

AbstractIdentification of the inner ear malformation types from radiographs is a complex process. We hypothesize that each inner ear anatomical type has a uniqueness in its appearance in radiographs. The outer contour of the inner ear was captured from the mid-modiolar section, perpendicular to the oblique-coronal plane, from which the A-value was determined from CT scans with different inner ear anatomical types. The mean A-value of normal anatomy (NA) and enlarged vestibular aqueduct syndrome (EVAS) anatomical types was greater than for Incomplete Partition (IP) type I, II, III and cochlear hypoplasia. The outer contour of the cochlear portion within the mid-modiolar section of NA and EVAS resembles the side view of Aladdin’s lamp; IP type I resembles the side-view of the Sphinx pyramid and type II a Pomeranian dog’s face. The steep spiraling cochlear turns of IP type III resemble an Auger screw tip. Drawing a line parallel to the posterior margin of internal auditory canal (IAC) in axial-view, bisecting the cavity into cochlear and vestibular portions, identifies common-cavity; whereas a cavity that falls under the straight-line leaving no cochlear portion identifies cochlear aplasia. An atlas of the outer contour of seventy-eight inner ears was created for the identification of the inner malformation types precisely.


2021 ◽  
pp. 014556132199683
Author(s):  
Wenqi Liang ◽  
Line Wang ◽  
Xinyu Song ◽  
Fenqi Gao ◽  
Pan Liu ◽  
...  

The bony cochlear nerve canal transmits the cochlear nerve as it passes from the fundus of the internal auditory canal to the cochlea. Stenosis of the cochlear nerve canal, defined as a diameter less than 1.0 mm in transverse diameter, is associated with inner ear anomalies and severe to profound congenital hearing loss. We describe an 11-month-old infant with nonsyndromic congenital sensorineural hearing loss with cochlear nerve canal stenosis. Next-generation sequencing revealed heterozygous mutations in MYH9 and MYH14, encoding for the inner ear proteins myosin heavy chain IIA and IIC. The patient’s hearing was rehabilitated with bilateral cochlear implantation.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Alaa Nasser Hussain Zaher ◽  
Tougan Taha Abd El Aziz ◽  
Ahmed Samy Abdelrahman

Abstract Background Hearing loss management using cochlear implants in patients with inner ear anomalies has long been discussed in the otology community. Magnetic resonances imaging (B,/IRI) and Computed tomography (CT) play important roles in the preoperative assessment of inner ear abnormalities such as cochlear nerve deficiency and variant anatomy as these abnormalities may not only affect the decision of the implantation procedure or the patient's prognosis regarding auditory improvement, but also the risk of complications. Objective To examine the prevalence of inner ear anomalies among cochlear implant recipients in patients with congenital sensorineural hearing loss among the pediatric age group in the Demerdash hospital, Ain Shams university using High resolution computed tomography (HRCT) and MRI imaging. Methods A retrospective descriptive study over the course of 9 months that included all patients that are candidates for cochlear implant referred to the Radiology department, Ain Shams University Hospitals for a preoperative imaging in the form of CT and VIRI scans. Results CT and MRI scans of 33 patients who had congenital hearing loss and were candidates for cochlear implantation with total 66 ears were reviewed. Inner ear anomalies were identified in 8 patients representing a prevalence (24.2%) with 14 ear diseased. Anomalies were seen bilaterally in 6 patients and unilaterally in 2 patients. Among the 14 diseased ear, 9 ears (64.3%) were seen with incomplete partition Il, 7 ears (50%) were seen with enlarged vestibular aqueduct, 4 ears (28.6%) were seen with cochlear hypoplasia, 3 ears (21.4%) were seen with semicircular canal aplasia, 2 ears (14.3%) were seen with incomplete partition type I, 2 ears (14.3%) were seen with cochlear nerve aplasia, 2 ears with cochlear aplasia (14.3%), I ear (7.1%) was seen with common cavity ear (7.1%) with complete labyrinthine aplasia. Conclusion Prevalence of inner ear anomalies among cochlear implant candidates was 24.2%. This result is consistent with results worldwide and the most common anomalies were Incomplete partition Il and large vestibular aqueduct. Abbreviations Computed tomography (CT), Magnetic resonance imaging (MRI), High resolution computed tomography (HRCT), Internal auditory canal (IAC), Cerebellopontine angle (CPA).


Sign in / Sign up

Export Citation Format

Share Document