scholarly journals Arabidopsis Hypocotyl Adventitious Root Formation Is Suppressed by ABA Signaling

Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1141
Author(s):  
Yinwei Zeng ◽  
Inge Verstraeten ◽  
Hoang Khai Trinh ◽  
Thomas Heugebaert ◽  
Christian V. Stevens ◽  
...  

Roots are composed of different root types and, in the dicotyledonous Arabidopsis, typically consist of a primary root that branches into lateral roots. Adventitious roots emerge from non-root tissue and are formed upon wounding or other types of abiotic stress. Here, we investigated adventitious root (AR) formation in Arabidopsis hypocotyls under conditions of altered abscisic acid (ABA) signaling. Exogenously applied ABA suppressed AR formation at 0.25 µM or higher doses. AR formation was less sensitive to the synthetic ABA analog pyrabactin (PB). However, PB was a more potent inhibitor at concentrations above 1 µM, suggesting that it was more selective in triggering a root inhibition response. Analysis of a series of phosphonamide and phosphonate pyrabactin analogs suggested that adventitious root formation and lateral root branching are differentially regulated by ABA signaling. ABA biosynthesis and signaling mutants affirmed a general inhibitory role of ABA and point to PYL1 and PYL2 as candidate ABA receptors that regulate AR inhibition.

Author(s):  
Xingqiang Fan ◽  
Hui Li ◽  
Yushuang Guo ◽  
Qi Qi ◽  
Xiangning Jiang ◽  
...  

Adventitious root (AR) formation is important for the vegetative propagation. The effects of strigolactones (SLs) on AR formation have been rarely reported, especially in woody plants. In this study, we first verified the inhibitory effects of SLs on AR formation in apple materials. Transcriptome analysis identified 12,051 differentially expressed genes over the course of AR formation, with functions related to organogenesis, cell wall biogenesis or plant senescence. WGCNA suggests SLs might inhibit AR formation through repressing the expression of two core hub genes, MdLAC3 and MdORE1. We further verified that enhanced cell wall formation and accelerated senescence were involved in the AR inhibition caused by SLs. Combining small RNA and degradome sequencing, as well as a dual-luciferase sensor system, we identified and validated three negatively correlated miRNA–mRNA pairs, including mdm-miR397–MdLAC3 involved in secondary cell wall formation, and mdm-miR164a/b–MdORE1 involved in senescence. Finally, we have experimentally demonstrated the role of mdm-miR164b–MdORE1 in SLs-mediated inhibition of AR formation. Overall, our findings not only propose a comprehensive regulatory network for the function of SLs on AR formation, but also provide novel candidate genes for the potential genetic improvement of AR formation in woody plants using transgenic or CRISPR technology.


2017 ◽  
Vol 68 (15) ◽  
pp. 4233-4247 ◽  
Author(s):  
Alexander Hilo ◽  
Fahimeh Shahinnia ◽  
Uwe Druege ◽  
Philipp Franken ◽  
Michael Melzer ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 520 ◽  
Author(s):  
Hua Wu ◽  
Renhua Zheng ◽  
Zhaodong Hao ◽  
Yan Meng ◽  
Yuhao Weng ◽  
...  

Phytosulfokine-α (PSK-α) is a newly discovered short peptide that acts as a phytohormone in various plants. Previous studies have shown that PSK-α is critical for many biological processes in plants, such as cell division and differentiation, somatic embryogenesis, pollen germination and plant resistance. In this study, we cloned two PSK homolog genes from Cunninghamia lanceolata (Lamb.) Hook (Chinese fir), ClPSK1 and ClPSK2, and characterized their function in root development. Quantitative RT-PCR analyses showed that both ClPSK1 and ClPSK2 were expressed in vegetative organs, mainly in roots. Transgenic Arabidopsis plants overexpressing ClPSK1 or ClPSK2 showed a higher frequency of adventitious root formation and increased root length. The expression of genes in Arabidopsis that are involved in stem cell activity (PLT1, PLT2 and WOX5), radial organization of the root (SHR and SCR) and cell cycle (CYCB1;1, CYCD4;1, CDKB1;1 and RBR) were significantly up-regulated, which may contribute to the elongation of the primary root and the formation of adventitious root in transgenic lines. Our results suggest that ClPSKs play an important role during root growth and development.


Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 240 ◽  
Author(s):  
Gonin ◽  
Bergougnoux ◽  
Nguyen ◽  
Gantet ◽  
Champion

The spermatophyte root system is composed of a primary root that develops from an embryonically formed root meristem, and of different post-embryonic root types: lateral and adventitious roots. Adventitious roots, arising from the stem of the plants, are the main component of the mature root system of many plants. Their development can also be induced in response to adverse environmental conditions or stresses. Here, in this review, we report on the morphological and functional diversity of adventitious roots and their origin. The hormonal and molecular regulation of the constitutive and inducible adventitious root initiation and development is discussed. Recent data confirmed the crucial role of the auxin/cytokinin balance in adventitious rooting. Nevertheless, other hormones must be considered. At the genetic level, adventitious root formation integrates the transduction of external signals, as well as a core auxin-regulated developmental pathway that is shared with lateral root formation. The knowledge acquired from adventitious root development opens new perspectives to improve micropropagation by cutting in recalcitrant species, root system architecture of crops such as cereals, and to understand how plants adapted during evolution to the terrestrial environment by producing different post-embryonic root types.


1995 ◽  
Vol 93 (1) ◽  
pp. 116-122 ◽  
Author(s):  
Eric J. W. Visser ◽  
Clementine J. Heijink ◽  
Karen J. G. M. Van Hout ◽  
Laurentius A. C. J. Voesenek ◽  
Gerard W. M. Barendse ◽  
...  

2014 ◽  
Vol 12 (2) ◽  
pp. 477 ◽  
Author(s):  
Ali Tehranifar ◽  
Saeed Mahmoody Tabar ◽  
Yahya Selahvarzi ◽  
Ahmad Balandary ◽  
Mahdiyeh Kharrazi

Sign in / Sign up

Export Citation Format

Share Document