scholarly journals Genome-Wide Identification and Characterization of the Potato bHLH Transcription Factor Family

Genes ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 54 ◽  
Author(s):  
Ruoqiu Wang ◽  
Peng Zhao ◽  
Nana Kong ◽  
Ruize Lu ◽  
Yue Pei ◽  
...  
2021 ◽  
Vol 22 (6) ◽  
pp. 2821
Author(s):  
Lixia Zhou ◽  
Rajesh Yarra

The AP2/ERF transcription factor family members play crucial roles in controlling plant growth and development, as well as responses to various abiotic stresses. Genome-wide identification and characterization of AP2/ERF genes has not yet been carried out in the oil palm genome. In the present work, we reported the occurrence of 172 EgAP2/ERFs (AP2, ERF, RAV & Soloist members) through genome-wide identification. Phylogenetic analysis was used to divide them into four groups, including: 34 AP2, 131 ERF, 5 RAV, and 2 Soloist gene family members. All 172 AP2/ERF members were unevenly distributed across 16 chromosomes of oil palm. Gene duplication analysis elucidated the tandem duplication of AP2/ERFs on chromosome blocks of the oil palm genome during evolution. Gene structure as well as conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the AP2/ERF genes. Several cis-regulatory elements—related to hormone, stress, and defense responses—were identified in the promoter regions of AP2/ERFs. Tissue-specific expression of 172 AP2/ERFs in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Finally, abiotic stress (salinity, cold & drought)-responsive AP2/ERFs in the oil palm genome were validated through qPCR analysis. Our study provided valuable information on oil palm AP2/ERF superfamily members and dissected their role in abiotic stress conditions.


2019 ◽  
Author(s):  
Olivera Grujic ◽  
Tanya N. Phung ◽  
Soo Bin Kwon ◽  
Adriana Arneson ◽  
Yuju Lee ◽  
...  

AbstractAnnotations of evolutionarily constraint provide important information for variant prioritization. Genome-wide maps of epigenomic marks and transcription factor binding provide complementary information for interpreting a subset of such prioritized variants. Here we developed the Constrained Non-Exonic Predictor (CNEP) to quantify the evidence of each base in the human genome being in a constrained non-exonic element from over 60,000 epigenomic and transcription factor binding features. We find that the CNEP score outperforms baseline and related existing scores at predicting constrained non-exonic bases from such data. However, a subset of such bases are still not well predicted by CNEP. We developed a complementary Conservation Signature Score by CNEP (CSS-CNEP) using conservation state and constrained element annotations that is predictive of those bases. Using human genetic variation, regulatory sequence motifs, mouse epigenomic data, and retrospectively considered additional human data we further characterize the nature of constrained non-exonic bases with low CNEP scores.


2011 ◽  
Vol 157 (2) ◽  
pp. 790-803 ◽  
Author(s):  
Marie Javelle ◽  
Catherine Klein-Cosson ◽  
Vanessa Vernoud ◽  
Véronique Boltz ◽  
Chris Maher ◽  
...  

2020 ◽  
Vol 126 (7) ◽  
pp. 875-888 ◽  
Author(s):  
Samir Sissaoui ◽  
Jun Yu ◽  
Aimin Yan ◽  
Rui Li ◽  
Onur Yukselen ◽  
...  

Rationale: Significant progress has revealed transcriptional inputs that underlie regulation of artery and vein endothelial cell fates. However, little is known concerning genome-wide regulation of this process. Therefore, such studies are warranted to address this gap. Objective: To identify and characterize artery- and vein-specific endothelial enhancers in the human genome, thereby gaining insights into mechanisms by which blood vessel identity is regulated. Methods and Results: Using chromatin immunoprecipitation and deep sequencing for markers of active chromatin in human arterial and venous endothelial cells, we identified several thousand artery- and vein-specific regulatory elements. Computational analysis revealed that NR2F2 (nuclear receptor subfamily 2, group F, member 2) sites were overrepresented in vein-specific enhancers, suggesting a direct role in promoting vein identity. Subsequent integration of chromatin immunoprecipitation and deep sequencing data sets with RNA sequencing revealed that NR2F2 regulated 3 distinct aspects related to arteriovenous identity. First, consistent with previous genetic observations, NR2F2 directly activated enhancer elements flanking cell cycle genes to drive their expression. Second, NR2F2 was essential to directly activate vein-specific enhancers and their associated genes. Our genomic approach further revealed that NR2F2 acts with ERG (ETS-related gene) at many of these sites to drive vein-specific gene expression. Finally, NR2F2 directly repressed only a small number of artery enhancers in venous cells to prevent their activation, including a distal element upstream of the artery-specific transcription factor, HEY2 (hes related family bHLH transcription factor with YRPW motif 2). In arterial endothelial cells, this enhancer was normally bound by ERG, which was also required for arterial HEY2 expression. By contrast, in venous endothelial cells, NR2F2 was bound to this site, together with ERG, and prevented its activation. Conclusions: By leveraging a genome-wide approach, we revealed mechanistic insights into how NR2F2 functions in multiple roles to maintain venous identity. Importantly, characterization of its role at a crucial artery enhancer upstream of HEY2 established a novel mechanism by which artery-specific expression can be achieved.


Sign in / Sign up

Export Citation Format

Share Document