scholarly journals The Morphology of Prometheus, Literary Geography and the Geoethical Project

Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 340
Author(s):  
Charles Travis

This paper explores mappings, musings and ‘thought experiments’ in literary geography to consider how they may contribute to geoethical pedagogy and research. Representations of Prometheus from the fourteenth century onwards have traveled along three broad symbological roads: first, as the creator, and bringer of fire; second as a bound figure in chains, and thirdly, unbound. However, it was the harnessing of fire by our species a millennium prior that gave rise to the myth of Prometheus and set into motion the geophysical process of combustion which “facilitated the transformation of much of the terrestrial surface […] and in the process pushed the parameters of the earth system into a new geological epoch.” As the geophysicist Professor Michael Mann observes, global warming and loss of biodiversity constitutes an ethical problem. The remediation of the Prometheus myth in Mary Shelley’s Frankenstein; or the modern Prometheus (1818), Jonathan Fetter-Vorm’s Trinity: A Graphic History of the First Atomic Bomb (2012) and William Golding’s novel Lord of the Flies (1954) provides the means to explore the geographical, historical and cultural contingencies of geoethical dilemmas contributing to the framing of the Anthropocene and Gaia heuristics. This paper argues for the necessity of scholars in the arts, humanities and geosciences to share and exchange idiographic and nomothetic perspectives in order to forge a geoethical dialectic that fuses poetic and positivistic methods into transcendent ontologies and epistemologies to address the existential questions of global warming and loss of biodiversity as we enter the age of the Anthropocene.

2016 ◽  
Vol 7 (4) ◽  
pp. 783-796 ◽  
Author(s):  
Vera Heck ◽  
Jonathan F. Donges ◽  
Wolfgang Lucht

Abstract. The planetary boundaries framework provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate system is approaching critical thresholds of atmospheric carbon, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2 °C. We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how the degree of anticipation of the climate problem and the intensity of tCDR efforts with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries. Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a collateral transgression of the planetary boundary of land system change. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries only exist for a small range of anticipation levels and depend critically on the underlying emission pathway. While tCDR has the potential to ensure the Earth system's persistence within a carbon-safe operating space under low-emission pathways, it is unlikely to succeed in a business-as-usual scenario.


2020 ◽  
Vol 10 (4) ◽  
pp. 20190106 ◽  
Author(s):  
Jonathan L. Payne ◽  
Aviv Bachan ◽  
Noel A. Heim ◽  
Pincelli M. Hull ◽  
Matthew L. Knope

The half-billion-year history of animal evolution is characterized by decreasing rates of background extinction. Earth's increasing habitability for animals could result from several processes: (i) a decrease in the intensity of interactions among species that lead to extinctions; (ii) a decrease in the prevalence or intensity of geological triggers such as flood basalt eruptions and bolide impacts; (iii) a decrease in the sensitivity of animals to environmental disturbance; or (iv) an increase in the strength of stabilizing feedbacks within the climate system and biogeochemical cycles. There is no evidence that the prevalence or intensity of interactions among species or geological extinction triggers have decreased over time. There is, however, evidence from palaeontology, geochemistry and comparative physiology that animals have become more resilient to an environmental change and that the evolution of complex life has, on the whole, strengthened stabilizing feedbacks in the climate system. The differential success of certain phyla and classes appears to result, at least in part, from the anatomical solutions to the evolution of macroscopic size that were arrived at largely during Ediacaran and Cambrian time. Larger-bodied animals, enabled by increased anatomical complexity, were increasingly able to mix the marine sediment and water columns, thus promoting stability in biogeochemical cycles. In addition, body plans that also facilitated ecological differentiation have tended to be associated with lower rates of extinction. In this sense, Cambrian solutions to Cambrian problems have had a lasting impact on the trajectory of complex life and, in turn, fundamental properties of the Earth system.


Eos ◽  
2009 ◽  
Vol 90 (2) ◽  
pp. 15-15 ◽  
Author(s):  
Motoyoshi Ikeda ◽  
Ralf Greve ◽  
Toshika Hara ◽  
Yutaka W. Watanabe ◽  
Atsumu Ohmura ◽  
...  

Author(s):  
Oleksandr Zbrutskyi ◽  
◽  
Nevodovskyi P ◽  
Anatoliy Vid’machenko ◽  
◽  
...  

Climate changes on planet Earth are mainly caused by disturbances in the energy balance of the Sun-Earth system. This process is the result of both natural changes in nature and the influence of anthropogenic factors. The combined effect of these factors can lead to threatening phenomena for mankind - a decrease in the power of the ozone layer, the formation of “ozone holes” and global warming on the planet and other disasters. The study of the causes of these factors and the determination of their relative contribution is one of the pressing problems of our time.


2013 ◽  
Vol 16 ◽  
pp. 63-72 ◽  
Author(s):  
G. S. Soreghan ◽  
A. S. Cohen

Abstract. A US National Science Foundation-funded workshop occurred 17–19 May 2013 at the University of Oklahoma to stimulate research using continental scientific drilling to explore earth's sedimentary, paleobiological and biogeochemical record. Participants submitted 3-page "pre-proposals" to highlight projects that envisioned using drill-core studies to address scientific issues in paleobiology, paleoclimatology, stratigraphy and biogeochemistry, and to identify locations where key questions can best be addressed. The workshop was also intended to encourage US scientists to take advantage of the exceptional capacity of unweathered, continuous core records to answer important questions in the history of earth's sedimentary, biogeochemical and paleobiologic systems. Introductory talks on drilling and coring methods, plus best practices in core handling and curation, opened the workshop to enable all to understand the opportunities and challenges presented by scientific drilling. Participants worked in thematic breakout sessions to consider questions to be addressed using drill cores related to glacial–interglacial and icehouse–greenhouse transitions, records of evolutionary events and extinctions, records of major biogeochemical events in the oceans, reorganization of earth's atmosphere, Lagerstätte and exceptional fossil biota, records of vegetation–landscape change, and special sampling requirements, contamination, and coring tool concerns for paleobiology, geochemistry, geochronology, and stratigraphy–sedimentology studies. Closing discussions at the workshop focused on the role drilling can play in studying overarching science questions about the evolution of the earth system. The key theme, holding the most impact in terms of societal relevance, is understanding how climate transitions have driven biotic change, and the role of pristine, stratigraphically continuous cores in advancing our understanding of this linkage. Scientific drilling, and particularly drilling applied to continental targets, provides unique opportunities to obtain continuous and unaltered material for increasingly sophisticated analyses, tapping the entire geologic record (extending through the Archean), and probing the full dynamic range of climate change and its impact on biotic history.


Geography ◽  
2021 ◽  
Author(s):  
Adam Bobbette

Political geology is concerned with the relationship between geological process, matter, and politics. It is a relatively recent neologism adopted by geographers and includes scholarship from a number of disciplines adjacent to geography, including anthropology, history of science, science and technology studies, and religious studies. The emergence of the Anthropocene no doubt played a role in raising geographers’ interest in the politicization of geology and geological knowledge. Much work in the field has begun to depart from the lens of Anthropocene studies and venture into new intellectual territory. Political geology seeks to understand geological knowledge as a tradition with histories and geographies. It studies the history of the geological sciences across world cultures and has an expanded conception of geological knowledge (and the sciences) beyond a focus on Euro-America. It is building a cosmopolitan understanding of the geological sciences. Geological knowledge is not taken for granted to speak for the earth system but is placed in its cultural, technological, and political context. At the same time, political geologists are concerned with the vibrant, lively materiality of geology. They are interested in Earth’s capacity to act upon politics and create political cultures. A renewed attention to the agency of geology has resulted in a number of papers that stress the ‘geo’ in geopolitics—the grounded, material dimension that situates all and any politics. There has therefore been an uptick in scholarship on verticality, depth, and resource extraction that foregrounds the material agency of geological process. This has been further brought together with consideration of the multiple knowledge traditions that claim to know and represent geological material. The conventional distinctions between geology and spirituality, geological sciences and religion, organic and inorganic, have been questioned. Alternative modes of writing about geology and the sciences are being explored through performance, fiction, sculpture, and poetry. Political geological scholarship thus brings together a number of discussions about the intersections among knowledge, Earth, power and governance. What follows is a broad introduction and survey of the key formative works of political geology, histories of geological knowledge, theoretical preoccupations, and sites of interest to political geologists. The theory and sites sections are ordered alphabetically.


Author(s):  
James R. Fleming

I have chosen to conclude these essays just as the well-known IGY was getting started. Of course, much has changed since then. There is little to gain, however, by attempting to recount the recent policy history of global change, at least from my perspective as a historian of science and technology. I have tried in this book to provide fresh perspectives on the more distant past, not to replicate the recent literature on global change. Although I am actively engaged in projects sponsored by the American Meteorological Society and the American Geophysical Union that document the recent past, I have little inclination to attempt to interpret it. Consequently I include in this chapter only the briefest sketch of the global cooling scare after 1958 and the return of a global warming discourse in the 1980s. I believe the metaphor of apprehension (awareness, understanding, fear, intervention) applies quite well to a number of current environmental issues, and I will point to some of them by way of conclusion. I was asked once after a seminar whether, as a historian, I could predict the eventual demise of today’s global change discourse, since there had been so many changes in the past. I responded that history has no predictive value, but does indeed provide valuable perspectives to its readers. History is first and foremost the study of change. For students of global change, history can serve as an inspirational story of how far we have come. It can also serve as a humbling reminder that change is indeed inevitable in our lives, in the Earth system, and in our ideas and institutions. Although I am professionally engaged with the past, I am still a citizen of my own age—an age of vastly enhanced environmental awareness. Like many of my contemporaries, I believe that humanity is a part of, not apart from, nature; that human activity is placing tremendous stress on global biophysical systems; and that we have an ethical responsibility to each other and to future generations to live sustainably, in harmony with the Earth. Your guesses about the future are probably as good as and perhaps better than mine.


Lethaia ◽  
2017 ◽  
Vol 50 (3) ◽  
pp. 381-399 ◽  
Author(s):  
Loren E. Babcock ◽  
Shanchi Peng ◽  
Per Ahlberg

2006 ◽  
Vol 3 (4) ◽  
pp. 805-826
Author(s):  
A. Gnanadesikan ◽  
J. L. Russell ◽  
F. Zeng

Abstract. Since the upper ocean takes up much of the heat added to the earth system by anthropogenic global warming, one would expect that global warming would lead to an increase in stratification and a decrease in the ventilation of the ocean interior. However, multiple simulations in global coupled climate models using an ideal age tracer which is set to zero in the mixed layer and ages at 1 yr/yr outside this layer show that the intermediate depths in the low latitudes become younger under global warming. This paper reconciles these apparently contradictory trends, showing that a decrease in upwelling of old water from below is responsible for the change. Implications for global biological cycling are considered.


Sign in / Sign up

Export Citation Format

Share Document