scholarly journals The Potential of Low-Cost UAVs and Open-Source Photogrammetry Software for High-Resolution Monitoring of Alpine Glaciers: A Case Study from the Kanderfirn (Swiss Alps)

Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 356 ◽  
Author(s):  
Alexander R. Groos ◽  
Thalia J. Bertschinger ◽  
Céline M. Kummer ◽  
Sabrina Erlwein ◽  
Lukas Munz ◽  
...  

Unmanned Aerial Vehicles (UAV) are a rapidly evolving tool in geosciences and are increasingly deployed for studying the dynamic processes of the earth’s surface. To assess the potential of autonomous low-cost UAVs for the mapping and monitoring of alpine glaciers, we conducted multiple aerial surveys on the Kanderfirn in the Swiss Alps in 2017 and 2018 using open hardware and software of the Paparazzi UAV project. The open-source photogrammetry software OpenDroneMap was tested for the generation of high-resolution orthophotos and digital surface models (DSMs) from aerial imagery and cross-checked with the well-established proprietary software Pix4D. Accurately measured ground control points served for the determination of the geometric accuracy of the orthophotos and DSMs. A horizontal (xy) accuracy of 0.7–1.2 m and a vertical (z) accuracy of 0.7–2.1 m was achieved for OpenDroneMap, compared to a xy-accuracy of 0.3–0.5 m and a z-accuracy of 0.4–0.5 m obtained for Pix4D. Based on the analysis and comparison of different orthophotos and DSMs, surface elevation, roughness and brightness changes from 3 June to 29 September 2018 were quantified. While the brightness of the glacier surface decreased linearly over the ablation season, the surface roughness increased. The mean DSM-based elevation change across the glacier tongue was 8 m, overestimating the measured melting and surface lowering at the installed ablation stakes by about 1.5 m. The presented results highlight that self-built fixed-wing UAVs in tandem with open-source photogrammetry software are an affordable alternative to commercial remote-sensing platforms and proprietary software. The applied low-cost approach also provides great potential for other regions and geoscientific disciplines.

2019 ◽  
Vol 5 (12) ◽  
pp. 88
Author(s):  
Kazuo Katoh

As conventional fluorescence microscopy and confocal laser scanning microscopy generally produce images with blurring at the upper and lower planes along the z-axis due to non-focal plane image information, the observation of biological images requires “deconvolution.” Therefore, a microscope system’s individual blur function (point spread function) is determined theoretically or by actual measurement of microbeads and processed mathematically to reduce noise and eliminate blurring as much as possible. Here the author describes the use of open-source software and open hardware design to build a deconvolution microscope at low cost, using readily available software and hardware. The advantage of this method is its cost-effectiveness and ability to construct a microscope system using commercially available optical components and open-source software. Although this system does not utilize expensive equipment, such as confocal and total internal reflection fluorescence microscopes, decent images can be obtained even without previous experience in electronics and optics.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3055
Author(s):  
Olivier Pieters ◽  
Tom De Swaef ◽  
Peter Lootens ◽  
Michiel Stock ◽  
Isabel Roldán-Ruiz ◽  
...  

The study of the dynamic responses of plants to short-term environmental changes is becoming increasingly important in basic plant science, phenotyping, breeding, crop management, and modelling. These short-term variations are crucial in plant adaptation to new environments and, consequently, in plant fitness and productivity. Scalable, versatile, accurate, and low-cost data-logging solutions are necessary to advance these fields and complement existing sensing platforms such as high-throughput phenotyping. However, current data logging and sensing platforms do not meet the requirements to monitor these responses. Therefore, a new modular data logging platform was designed, named Gloxinia. Different sensor boards are interconnected depending upon the needs, with the potential to scale to hundreds of sensors in a distributed sensor system. To demonstrate the architecture, two sensor boards were designed—one for single-ended measurements and one for lock-in amplifier based measurements, named Sylvatica and Planalta, respectively. To evaluate the performance of the system in small setups, a small-scale trial was conducted in a growth chamber. Expected plant dynamics were successfully captured, indicating proper operation of the system. Though a large scale trial was not performed, we expect the system to scale very well to larger setups. Additionally, the platform is open-source, enabling other users to easily build upon our work and perform application-specific optimisations.


2017 ◽  
Author(s):  
Oliver Wigmore ◽  
Bryan Mark

Abstract. The glaciers of the Cordillera Blanca Peru are rapidly retreating as a result of climate change, altering timing, quantity and quality of water available to downstream users. Furthermore, increases in the number and size of proglacial lakes associated with these melting glaciers is increasing potential exposure to glacier lake outburst floods (GLOFs). Understanding how these glaciers are changing and their connection to proglacial lake systems is thus of critical importance. Most satellite data are too coarse for studying small mountain glaciers and are often affected by cloud cover, while traditional airborne photogrammetry and LiDAR are costly. Recent developments have made Unmanned Aerial Vehicles (UAVs) a viable and potentially transformative method for studying glacier change at high spatial resolution, on demand and at relatively low cost. Using a custom designed hexacopter built for high altitude (4000–6000 m asl) operation we completed repeat aerial surveys (2014 and 2015) of the debris covered Llaca glacier tongue and proglacial lake system. High resolution orthomosaics (5 cm) and digital elevation models (DEMs) (10 cm) were produced and their accuracy assessed. Analysis of these datasets reveals highly heterogeneous patterns of glacier change. The most rapid areas of ice loss were associated with exposed ice cliffs and melt water ponds on the glacier surface. Considerable subsidence and low surface velocities were also measured on the sediments within the pro-glacial lake, indicating the presence of extensive regions of buried ice and continued connection to the glacier tongue. Only limited horizontal retreat of the glacier tongue was observed, indicating that simple measurements of changes in aerial extent are inadequate for understanding actual changes in glacier ice quantity.


Author(s):  
Ana Rubio Denniss ◽  
Thomas E. Gorochowski ◽  
Sabine Hauert

Engineering microscopic collectives of cells or microrobots is challenging due to the often-limited capabilities of the individual agents, our inability to reliably program their motion and local interactions, and difficulties visualising their behaviours. Here, we present a low-cost, modular and open-source Dynamic Optical MicroEnvironment (DOME) and demonstrate its ability to augment microagent capabilities and control collective behaviours using light. The DOME offers an accessible means to study complex multicellular phenomena and implement de-novo microswarms with desired functionalities. Corresponding author(s) Email: [email protected] [email protected]


2019 ◽  
Vol 24 (3) ◽  
pp. 504-511
Author(s):  
Guillermo Roberto Solarte Martinez

Abstract—. In this research, we propose the creation of an interface that allows the connection between PLC equipment from different manufacturers and software profit philosophy, on the one hand we have the industrial automation [1] giant Allen Bradley, who has a strong presence in our region, and has with a suite of proprietary software that increases its cost proportionally with its functionality, and on the other hand Industrial Shields, a company that has emerged in the search for low-cost equipment, sheltered by the apogee and boom of technology based on open source [2], which offers equipment with industrial support features, programmable in Open Source platforms; all this in order to take advantage of the infrastructure currently installed based on proprietary software for the capture of physical data and open the barriers of software limitations so that production data can be exported and displayed at the executive's level and pleasure, without thinking about acquiring software in the range of tens of millions of pesos but investing in knowledge taking advantage of the doors that open up when programming on free platforms open to the community of programmers multidisciplinary


2016 ◽  
Vol 18 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Jeffrey M. Sadler ◽  
Daniel P. Ames ◽  
Rohit Khattar

Environmental data are critical to understanding environmental phenomena, yet their consistent collection and curation can be cost-prohibitive. This paper describes a recipe for the design, development, and deployment of a low-cost environmental data logging and transmission system for environmental sensors and its connection to an open source data-sharing network. The hardware is built using several low-cost, open-source, mass-produced components. The system automatically ingests data into HydroServer, a standards-based server in the open source hydrologic information system (HIS) created by the Consortium of Universities for the Advancement of Hydrologic Sciences Inc. (CUAHSI). By publishing data in this way, they are discoverable through the geographic information system (GIS)-based CUAHSI tools, HydroDesktop and HydroShare. In addition, because they follow WaterML encoding, open hardware data stored in the HIS can be included in international catalog such as the global earth observation system of system catalog. A recipe for building the system is provided. Multiple deployments used to test proof-of-concept of the system are described and their results are given. Ease of deployment and reliability of the logging and transmission system is also addressed.


2006 ◽  
Vol 53 (9) ◽  
pp. 1295-1311 ◽  
Author(s):  
Dongheng Li ◽  
Derrick J. Parkhurst

2020 ◽  
Author(s):  
Andrew Harvie ◽  
John de Mello

The Open Polarimeter (“Opol”) is a phase-based, high-resolution laser polarimeter formed from a small number of inexpensive optomechanical parts. The complete instrument can be assembled from scratch in two days for less than US$250, using only a 3D-printer and a benchtop milling machine. However despite its low cost Opol achieves a high accuracy of a few millidegrees, comparable to far costlier commercial instruments. It is released here as open hardware, with technical diagrams, a full parts list, and source-code for its firmware included as Supporting Information. Beyond polarimetry, Opol’s easy-to-build and versatile optical mounting system is likely to prove useful for a wide variety of optical systems.


Author(s):  
A. Lingua ◽  
F. Noardo ◽  
A. Spanò ◽  
S. Sanna ◽  
F. Matrone

In recent years, many studies revealed the advantages of using airborne oblique images for obtaining improved 3D city models (including façades and building footprints). Here the acquisition and use of oblique images from a low cost and open source Unmanned Aerial Vehicle (UAV) for the 3D high-level-of-detail reconstruction of historical architectures is evaluated. The critical issues of such acquisitions (flight planning strategies, ground control points distribution, etc.) are described. Several problems should be considered in the flight planning: best approach to cover the whole object with the minimum time of flight; visibility of vertical structures; occlusions due to the context; acquisition of all the parts of the objects (the closest and the farthest) with similar resolution; suitable camera inclination, and so on. In this paper a solution is proposed in order to acquire oblique images with one only flight. The data processing was realized using Structure-from-Motion-based approach for point cloud generation using dense image-matching algorithms implemented in an open source software. The achieved results are analysed considering some check points and some reference LiDAR data. The system was tested for surveying a historical architectonical complex: the “Sacro Mo nte di Varallo Sesia” in north-west of Italy. This study demonstrates that the use of oblique images acquired from a low cost UAV system and processed through an open source software is an effective methodology to survey cultural heritage, characterized by limited accessibility, need for detail and rapidity of the acquisition phase, and often reduced budgets.


Sign in / Sign up

Export Citation Format

Share Document