scholarly journals Supporting data for "A low-cost, open source monitoring system for collecting high-resolution water use data on magnetically-driven residential water meters"

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3655 ◽  
Author(s):  
Camilo J. Bastidas Pacheco ◽  
Jeffery S. Horsburgh ◽  
Robb J. Tracy

We present a low-cost (≈$150) monitoring system for collecting high temporal resolution residential water use data without disrupting the operation of commonly available water meters. This system was designed for installation on top of analog, magnetically driven, positive displacement, residential water meters and can collect data at a variable time resolution interval. The system couples an Arduino Pro microcontroller board, a datalogging shield customized for this specific application, and a magnetometer sensor. The system was developed and calibrated at the Utah Water Research Laboratory and was deployed for testing on five single family residences in Logan and Providence, Utah, for a period of over 1 month. Battery life for the device was estimated to be over 5 weeks with continuous data collection at a 4 s time interval. Data collected using this system, under ideal installation conditions, was within 2% of the volume recorded by the register of the meter on which they were installed. Results from field deployments are presented to demonstrate the accuracy, functionality, and applicability of the system. Results indicate that the device is capable of collecting data at a temporal resolution sufficient for identifying individual water use events and analyzing water use at coarser temporal resolutions. This system is of special interest for water end use studies, future projections of residential water use, water infrastructure design, and for advancing our understanding of water use timing and behavior. The system’s hardware design and software are open source, are available for potential reuse, and can be customized for specific research needs.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5310
Author(s):  
Nour A. Attallah ◽  
Jeffery S. Horsburgh ◽  
Arle S. Beckwith ◽  
Robb J. Tracy

We present a new, open source, computationally capable datalogger for collecting and analyzing high temporal resolution residential water use data. Using this device, execution of water end use disaggregation algorithms or other data analytics can be performed directly on existing, analog residential water meters without disrupting their operation, effectively transforming existing water meters into smart, edge computing devices. Computation of water use summaries and classified water end use events directly on the meter minimizes data transmission requirements, reduces requirements for centralized data storage and processing, and reduces latency between data collection and generation of decision-relevant information. The datalogger couples an Arduino microcontroller board for data acquisition with a Raspberry Pi computer that serves as a computational resource. The computational node was developed and calibrated at the Utah Water Research Laboratory (UWRL) and was deployed for testing on the water meter for a single-family residential home in Providence City, UT, USA. Results from field deployments are presented to demonstrate the data collection accuracy, computational functionality, power requirements, communication capabilities, and applicability of the system. The computational node’s hardware design and software are open source, available for potential reuse, and can be adapted to specific research needs.


Sensors ◽  
2014 ◽  
Vol 14 (12) ◽  
pp. 23388-23397 ◽  
Author(s):  
Salvatore Filippo Di Gennaro ◽  
Alessandro Matese ◽  
Mirko Mancin ◽  
Jacopo Primicerio ◽  
Alberto Palliotti

Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 356 ◽  
Author(s):  
Alexander R. Groos ◽  
Thalia J. Bertschinger ◽  
Céline M. Kummer ◽  
Sabrina Erlwein ◽  
Lukas Munz ◽  
...  

Unmanned Aerial Vehicles (UAV) are a rapidly evolving tool in geosciences and are increasingly deployed for studying the dynamic processes of the earth’s surface. To assess the potential of autonomous low-cost UAVs for the mapping and monitoring of alpine glaciers, we conducted multiple aerial surveys on the Kanderfirn in the Swiss Alps in 2017 and 2018 using open hardware and software of the Paparazzi UAV project. The open-source photogrammetry software OpenDroneMap was tested for the generation of high-resolution orthophotos and digital surface models (DSMs) from aerial imagery and cross-checked with the well-established proprietary software Pix4D. Accurately measured ground control points served for the determination of the geometric accuracy of the orthophotos and DSMs. A horizontal (xy) accuracy of 0.7–1.2 m and a vertical (z) accuracy of 0.7–2.1 m was achieved for OpenDroneMap, compared to a xy-accuracy of 0.3–0.5 m and a z-accuracy of 0.4–0.5 m obtained for Pix4D. Based on the analysis and comparison of different orthophotos and DSMs, surface elevation, roughness and brightness changes from 3 June to 29 September 2018 were quantified. While the brightness of the glacier surface decreased linearly over the ablation season, the surface roughness increased. The mean DSM-based elevation change across the glacier tongue was 8 m, overestimating the measured melting and surface lowering at the installed ablation stakes by about 1.5 m. The presented results highlight that self-built fixed-wing UAVs in tandem with open-source photogrammetry software are an affordable alternative to commercial remote-sensing platforms and proprietary software. The applied low-cost approach also provides great potential for other regions and geoscientific disciplines.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 752 ◽  
Author(s):  
Alberto Alvarellos ◽  
Marcos Gestal ◽  
Julián Dorado ◽  
Juan Ramón Rabuñal

Radon gas has been declared a human carcinogen by the United States Environmental Protection Agency (USEPA) and the International Agency for Research on Cancer (IARC). Several studies carried out in Spain highlighted the high radon concentrations in several regions, with Galicia (northwestern Spain) being one of the regions with the highest radon concentrations. The objective of this work was to create a safe and low-cost radon monitoring and alert system, based on open source technologies. To achieve this objective, the system uses devices, a collection of sensors with a processing unit and a communication module, and a backend, responsible for managing all the information, predicting radon levels and issuing alerts using open source technologies. Security is one of the largest challenges for the internet of things, and it is utterly important in the current scenario, given that high radon concentrations pose a health risk. For this reason, this work focuses on securing the entire end-to-end communication path to avoid data forging. The results of this work indicate that the development of a low-cost, yet secured, radon monitoring system is feasible, allowing one to create a network of sensors that can help mitigate the health hazards that high radon concentrations pose.


Proceedings ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 56
Author(s):  
Alejandro Mosteiro Vázquez ◽  
Carlos Dafonte ◽  
Ángel Gómez

This paper introduces the development of a data center monitoring system based on IoT technologies. The system is meant to work as an administrative tool for system administrators in any environment, but mainly focused on data centers, since it integrates sensor and server status data. We are developing a system that gives a broad view of a data center, integrating server data such as CPU and memory usage or network bandwidth with room health parameters such as temperature, humidity, and power consumption or the presence sensors that indicate if there were people inside the room at the time a certain event occurred. As this is a work in progress, in this paper, we present the state-of-the-art of this subject, as well as what we expect to obtain from this project.


10.29007/q4cf ◽  
2018 ◽  
Author(s):  
Ronak Vithlani ◽  
Siddharth Fultariya ◽  
Mahesh Jivani ◽  
Haresh Pandya

In this paper, we have described an operative prototype for Internet of Things (IoT) used for consistent monitoring various environmental sensors by means of low cost open source embedded system. The explanation about the unified network construction and the interconnecting devices for the consistent measurement of environmental parameters by various sensors and broadcast of data through internet is being presented. The framework of the monitoring system is based on a combination of embedded sensing units, information structure for data collection, and intellectual and context responsiveness. The projected system does not involve a devoted server computer with respect to analogous systems and offers a light weight communication protocol to monitor environment data using sensors. Outcomes are inspiring as the consistency of sensing information broadcast through the projected unified network construction is very much reliable. The prototype was experienced to create real-time graphical information rather than a test bed set-up.


2018 ◽  
Vol 6 (1) ◽  
pp. 23
Author(s):  
B. H. Sudantha ◽  
K. M. H. K. Warnakulasooriya ◽  
Y. P. Jayasuriya ◽  
G. R. Ratnayaka ◽  
P. K. S. Mahanama ◽  
...  

Author(s):  
Jameel Kadhim Abed

This paper presents a new smart monitoring system designed based on dc to dc converter for photovoltaic application. This system design according two parts to monitor input-output voltages and currents for dc/dc converter, (a) control system: the control system using Arduino NANO as microcontroller to read the measuring voltage and current values from sensor circuits of voltage and current. The measuring data send by Bluetooth HC-05 to end user (monitor system). Bluetooth as wireless communication between the control system and monitoring system (end users). (b) monitoring system: The monitoring system application program as a new application designed to monitor the received data from control system from safety distance (around 10m). the application program designed by the open source AppyBuilder software. The AppyBuilder is an open source software for easily building Android smartphone application. The advantages of the final circuit can be used to monitor step-up or step-down topologies, low-cost, and high-efficiency performance.


Sign in / Sign up

Export Citation Format

Share Document