scholarly journals The Open Polarimeter: A High-Resolution Instrument Made from Inexpensive Optomechanical Parts

Author(s):  
Andrew Harvie ◽  
John de Mello

The Open Polarimeter (“Opol”) is a phase-based, high-resolution laser polarimeter formed from a small number of inexpensive optomechanical parts. The complete instrument can be assembled from scratch in two days for less than US$250, using only a 3D-printer and a benchtop milling machine. However despite its low cost Opol achieves a high accuracy of a few millidegrees, comparable to far costlier commercial instruments. It is released here as open hardware, with technical diagrams, a full parts list, and source-code for its firmware included as Supporting Information. Beyond polarimetry, Opol’s easy-to-build and versatile optical mounting system is likely to prove useful for a wide variety of optical systems.

2020 ◽  
Author(s):  
Andrew Harvie ◽  
John de Mello

The Open Polarimeter (“Opol”) is a phase-based, high-resolution laser polarimeter formed from a small number of inexpensive optomechanical parts. The complete instrument can be assembled from scratch in two days for less than US$250, using only a 3D-printer and a benchtop milling machine. However despite its low cost Opol achieves a high accuracy of a few millidegrees, comparable to far costlier commercial instruments. It is released here as open hardware, with technical diagrams, a full parts list, and source-code for its firmware included as Supporting Information. Beyond polarimetry, Opol’s easy-to-build and versatile optical mounting system is likely to prove useful for a wide variety of optical systems.


Author(s):  
S. Crommelinck ◽  
R. Bennett ◽  
M. Gerke ◽  
M. N. Koeva ◽  
M. Y. Yang ◽  
...  

Unmanned aerial vehicles (UAV) are increasingly investigated with regard to their potential to create and update (cadastral) maps. UAVs provide a flexible and low-cost platform for high-resolution data, from which object outlines can be accurately delineated. This delineation could be automated with image analysis methods to improve existing mapping procedures that are cost, time and labor intensive and of little reproducibility. This study investigates a superpixel approach, namely simple linear iterative clustering (SLIC), in terms of its applicability to UAV data. The approach is investigated in terms of its applicability to high-resolution UAV orthoimages and in terms of its ability to delineate object outlines of roads and roofs. Results show that the approach is applicable to UAV orthoimages of 0.05 m GSD and extents of 100 million and 400 million pixels. Further, the approach delineates the objects with the high accuracy provided by the UAV orthoimages at completeness rates of up to 64 %. The approach is not suitable as a standalone approach for object delineation. However, it shows high potential for a combination with further methods that delineate objects at higher correctness rates in exchange of a lower localization quality. This study provides a basis for future work that will focus on the incorporation of multiple methods for an interactive, comprehensive and accurate object delineation from UAV data. This aims to support numerous application fields such as topographic and cadastral mapping.


Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 356 ◽  
Author(s):  
Alexander R. Groos ◽  
Thalia J. Bertschinger ◽  
Céline M. Kummer ◽  
Sabrina Erlwein ◽  
Lukas Munz ◽  
...  

Unmanned Aerial Vehicles (UAV) are a rapidly evolving tool in geosciences and are increasingly deployed for studying the dynamic processes of the earth’s surface. To assess the potential of autonomous low-cost UAVs for the mapping and monitoring of alpine glaciers, we conducted multiple aerial surveys on the Kanderfirn in the Swiss Alps in 2017 and 2018 using open hardware and software of the Paparazzi UAV project. The open-source photogrammetry software OpenDroneMap was tested for the generation of high-resolution orthophotos and digital surface models (DSMs) from aerial imagery and cross-checked with the well-established proprietary software Pix4D. Accurately measured ground control points served for the determination of the geometric accuracy of the orthophotos and DSMs. A horizontal (xy) accuracy of 0.7–1.2 m and a vertical (z) accuracy of 0.7–2.1 m was achieved for OpenDroneMap, compared to a xy-accuracy of 0.3–0.5 m and a z-accuracy of 0.4–0.5 m obtained for Pix4D. Based on the analysis and comparison of different orthophotos and DSMs, surface elevation, roughness and brightness changes from 3 June to 29 September 2018 were quantified. While the brightness of the glacier surface decreased linearly over the ablation season, the surface roughness increased. The mean DSM-based elevation change across the glacier tongue was 8 m, overestimating the measured melting and surface lowering at the installed ablation stakes by about 1.5 m. The presented results highlight that self-built fixed-wing UAVs in tandem with open-source photogrammetry software are an affordable alternative to commercial remote-sensing platforms and proprietary software. The applied low-cost approach also provides great potential for other regions and geoscientific disciplines.


Author(s):  
Christoph Sosna ◽  
Rainer Buchner ◽  
Walter Lang ◽  
Wolfgang Benecke ◽  
Christian Boehm ◽  
...  

In this paper a feasibility study of a micromachined PQT-sensor for measurement of pressure (P), flow rate (Q), and temperature (T) for diagnostic applications in pneumatic systems is presented. As a low cost device this innovative PQT-sensor has to fulfill different kinds of criteria such as wide measuring range, fast response time, high resolution and high accuracy for diagnosing the health status of a pneumatic system. By using micro electro mechanical systems (MEMS) technologies small high-performance sensors were fabricated which fulfill all these criteria. At first, principles will be described that have been chosen for measurement of pressure, flow and temperature that will be used for the PQT-sensor. A design proposal for the sensor will be presented and verified with analytical calculations to show its applicability.


Author(s):  
Fabio Luis Nardin ◽  
Fabricio Tadeu Paziani ◽  
Flavio Yuko Watanabe ◽  
Rafael Vidal Aroca

<p>In the current economic scenario of the Brazilian federal universities, it is a great challenge to acquire high resolution and high accuracy equipment for use in metrology practical classes. As an alternative, it is common the development of projects aiming the design and construction of low-cost courseware equipment. They are built within extension activities involving graduation students. This paper reports the development of two pieces of equipment for use in practical classes of the discipline “Principles of Industrial Metrology”, of the Mechanical Engineering course at the Federal University of São Carlos (UFSCar). The activity was supported by the Extension Office (ProEx) and had, as a premise, the use of low-cost materials and manufacturing processes. Within the proposed scope, a universal measuring table and a linear measuring machine were developed. The constructive process allowed to verify that the exercise of simple practices is a motivating experience for the student who was directly involved in the activity and for the students who use the produced equipment.</p>


2014 ◽  
Vol 20 (3) ◽  
pp. 245-255 ◽  
Author(s):  
Ariel Calderon ◽  
James Griffin ◽  
Juan Cristóbal Zagal

Purpose – The democratization of invention is a long lasting desire for the advancement of society. Having access to education and the means of production appears as the major factors for the implementation of this goal. 3D printing is a revolutionary technology that has the potential to bring digital manufacturing to everyone. However, the rise of personal fabrication requires an increase in printing quality, a reduction on machine cost and an increase in knowledge shared by the open hardware community. The purpose of this paper is to explore the development of a new Open Hardware printer project to address these points. Design/methodology/approach – The authors have designed and constructed a low-cost photopolymer-based 3D printer called BeamMaker. The printer is connected to a host computer and a digital-light-processing projector. This work details the design process and how improvements were implemented to reach good printing quality. The authors provide public access to the instructions, software, source code, parts list, user manual and STL and CAD files. Findings – The BeamMaker printer can build objects with a high surface quality that is comparable to the quality obtained by industrial photopolymer-based 3D printers. When testing the ability to print a sample cylinder, the printer shows higher accuracy when compared to other personal 3D printers. These findings are encouraging considering the low cost of the system. Research limitations/implications – The printing failure rate of the system has not been measured to date. The system requires some improvements to produce large objects. Practical implications – The printer cost is just USD380. This is five to eight times less expensive than popular personal 3D printers available today. The cost is 30 times less expensive than a personal photopolymer 3D printer produced by a main commercial company and yet producing results of similar quality. The authors expect good avenues for collaboration from the open-source community to continue improving these systems. Social implications – The high cost of current personal 3D printers prevents users from developing countries from entering into the open hardware trend. A dramatic reduction in printer cost such as that explored in this work might contribute to the real democratization of personal fabrication. Originality/value – The authors report on the status of three other photopolymer-based personal 3D printer projects. To the best of the authors' knowledge, BeamMaker is the first fully open hardware 3D printer project which uses this technology.


2020 ◽  
Author(s):  
Derek Schulte ◽  
Kyam Krieger ◽  
Carl W. Chin ◽  
Alexander Sonn
Keyword(s):  
Low Cost ◽  

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 785
Author(s):  
Chow Shing Shin ◽  
Yu Chia Chang

Lattice structures are superior to stochastic foams in mechanical properties and are finding increasing applications. Their properties can be tailored in a wide range through adjusting the design and dimensions of the unit cell, changing the constituent materials as well as forming into hierarchical structures. In order to achieve more levels of hierarchy, the dimensions of the fundamental lattice have to be small enough. Although lattice size of several microns can be fabricated using the two-photon polymerization technique, sophisticated and costly equipment is required. To balance cost and performance, a low-cost high resolution micro-stereolithographic system has been developed in this work based on a commercial digital light processing (DLP) projector. Unit cell lengths as small as 100 μm have been successfully fabricated. Decreasing the unit cell size from 150 to 100 μm increased the compressive stiffness by 26%. Different pretreatments to facilitate the electroless plating of nickel on the lattice structure have been attempted. A pretreatment of dip coating in a graphene suspension is the most successful and increased the strength and stiffness by 5.3 and 3.6 times, respectively. Even a very light and incomplete nickel plating in the interior has increase the structural stiffness and strength by more than twofold.


Author(s):  
Jonas Austerjost ◽  
Robert Söldner ◽  
Christoffer Edlund ◽  
Johan Trygg ◽  
David Pollard ◽  
...  

Machine vision is a powerful technology that has become increasingly popular and accurate during the last decade due to rapid advances in the field of machine learning. The majority of machine vision applications are currently found in consumer electronics, automotive applications, and quality control, yet the potential for bioprocessing applications is tremendous. For instance, detecting and controlling foam emergence is important for all upstream bioprocesses, but the lack of robust foam sensing often leads to batch failures from foam-outs or overaddition of antifoam agents. Here, we report a new low-cost, flexible, and reliable foam sensor concept for bioreactor applications. The concept applies convolutional neural networks (CNNs), a state-of-the-art machine learning system for image processing. The implemented method shows high accuracy for both binary foam detection (foam/no foam) and fine-grained classification of foam levels.


Sign in / Sign up

Export Citation Format

Share Document