scholarly journals Towards the Development of a Substance Abuse Index (SEI) through Informatics

Healthcare ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1596
Author(s):  
Nikhila Guttha ◽  
Zhuqi Miao ◽  
Rittika Shamsuddin

Substance abuse or drug dependence is a prevalent phenomenon, and is on the rise in United States. Important contributing factors for the prevalence are the addictive nature of certain medicinal/prescriptive drugs, individual dispositions (biological, physiological, and psychological), and other external influences (e.g., pharmaceutical advertising campaigns). However, currently there is no comprehensive computational or machine learning framework that allows systematic studies of substance abuse and its factors with majority of the works using subjective surveys questionnaires and focusing on classification techniques. Lacking standardized methods and/or measures to prescribe medication and to study substance abuse makes it difficult to advance through collective research efforts. Thus, in this paper, we propose to test the feasibility of developing a, objective substance effect index, SEI, that can measure the tendency of an individual towards substance abuse. To that end, we combine the benefits of Electronics Medical Records (EMR) with machine learning technology by defining SEI as a function of EMR data and using logistics regression to obtain a closed form expression for SEI. We conduct various evaluations to validate the proposed model, and the results show that further work towards the development of SEI will not only provide researchers with standard computational measure for substance abuse, but may also allow them to study certain attribute interactions to gain further insights into substance abuse tendencies.

2021 ◽  
pp. 002224372110164
Author(s):  
Khaled Boughanmi ◽  
Asim Ansari

The success of creative products depends upon the felt experience of consumers. Capturing such consumer reactions requires the fusing of different types of experiential covariates and perceptual data in an integrated modeling framework. In this paper, the authors develop a novel multimodal machine learning framework that combines multimedia data (e.g., metadata, acoustic features and user generated textual data) in creative product settings and apply it for predicting the success of musical albums and playlists. The authors estimate the proposed model on a unique dataset which they collected using different online sources. The model integrates different types of nonparametrics to flexibly accommodate diverse types of effects. It uses penalized splines to capture the nonlinear impact of acoustic features and a supervised hierarchical Dirichlet process to represent crowd-sourced textual tags. It captures dynamics via a state-space specification. The authors show the predictive superiority of the model with respect to several benchmarks. The results illuminate the dynamics of musical success over the past five decades. The authors then use the components of the model for marketing decisions such as forecasting the success of new albums, album tuning and diagnostics, construction of playlists for different generations of music listeners, and contextual recommendations.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


Author(s):  
Naoko FUKUSHI ◽  
Daishiro KOBAYASHI ◽  
Seiji IWAO ◽  
Ryosuke KASAHARA ◽  
Nobuyoshi YABUKI

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Justin Y. Lee ◽  
Britney Nguyen ◽  
Carlos Orosco ◽  
Mark P. Styczynski

Abstract Background The topology of metabolic networks is both well-studied and remarkably well-conserved across many species. The regulation of these networks, however, is much more poorly characterized, though it is known to be divergent across organisms—two characteristics that make it difficult to model metabolic networks accurately. While many computational methods have been built to unravel transcriptional regulation, there have been few approaches developed for systems-scale analysis and study of metabolic regulation. Here, we present a stepwise machine learning framework that applies established algorithms to identify regulatory interactions in metabolic systems based on metabolic data: stepwise classification of unknown regulation, or SCOUR. Results We evaluated our framework on both noiseless and noisy data, using several models of varying sizes and topologies to show that our approach is generalizable. We found that, when testing on data under the most realistic conditions (low sampling frequency and high noise), SCOUR could identify reaction fluxes controlled only by the concentration of a single metabolite (its primary substrate) with high accuracy. The positive predictive value (PPV) for identifying reactions controlled by the concentration of two metabolites ranged from 32 to 88% for noiseless data, 9.2 to 49% for either low sampling frequency/low noise or high sampling frequency/high noise data, and 6.6–27% for low sampling frequency/high noise data, with results typically sufficiently high for lab validation to be a practical endeavor. While the PPVs for reactions controlled by three metabolites were lower, they were still in most cases significantly better than random classification. Conclusions SCOUR uses a novel approach to synthetically generate the training data needed to identify regulators of reaction fluxes in a given metabolic system, enabling metabolomics and fluxomics data to be leveraged for regulatory structure inference. By identifying and triaging the most likely candidate regulatory interactions, SCOUR can drastically reduce the amount of time needed to identify and experimentally validate metabolic regulatory interactions. As high-throughput experimental methods for testing these interactions are further developed, SCOUR will provide critical impact in the development of predictive metabolic models in new organisms and pathways.


2021 ◽  
Vol 25 (3) ◽  
pp. 711-738
Author(s):  
Phu Pham ◽  
Phuc Do

Link prediction on heterogeneous information network (HIN) is considered as a challenge problem due to the complexity and diversity in types of nodes and links. Currently, there are remained challenges of meta-path-based link prediction in HIN. Previous works of link prediction in HIN via network embedding approach are mainly focused on exploiting features of node rather than existing relations in forms of meta-paths between nodes. In fact, predicting the existence of new links between non-linked nodes is absolutely inconvincible. Moreover, recent HIN-based embedding models also lack of thorough evaluations on the topic similarity between text-based nodes along given meta-paths. To tackle these challenges, in this paper, we proposed a novel approach of topic-driven multiple meta-path-based HIN representation learning framework, namely W-MMP2Vec. Our model leverages the quality of node representations by combining multiple meta-paths as well as calculating the topic similarity weight for each meta-path during the processes of network embedding learning in content-based HINs. To validate our approach, we apply W-TMP2Vec model in solving several link prediction tasks in both content-based and non-content-based HINs (DBLP, IMDB and BlogCatalog). The experimental outputs demonstrate the effectiveness of proposed model which outperforms recent state-of-the-art HIN representation learning models.


2021 ◽  
Vol 11 (6) ◽  
pp. 2838
Author(s):  
Nikitha Johnsirani Venkatesan ◽  
Dong Ryeol Shin ◽  
Choon Sung Nam

In the pharmaceutical field, early detection of lung nodules is indispensable for increasing patient survival. We can enhance the quality of the medical images by intensifying the radiation dose. High radiation dose provokes cancer, which forces experts to use limited radiation. Using abrupt radiation generates noise in CT scans. We propose an optimal Convolutional Neural Network model in which Gaussian noise is removed for better classification and increased training accuracy. Experimental demonstration on the LUNA16 dataset of size 160 GB shows that our proposed method exhibit superior results. Classification accuracy, specificity, sensitivity, Precision, Recall, F1 measurement, and area under the ROC curve (AUC) of the model performance are taken as evaluation metrics. We conducted a performance comparison of our proposed model on numerous platforms, like Apache Spark, GPU, and CPU, to depreciate the training time without compromising the accuracy percentage. Our results show that Apache Spark, integrated with a deep learning framework, is suitable for parallel training computation with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document