scholarly journals Comprehensive Energy Renovation of Two Danish Heritage Buildings within IEA SHC Task 59

Heritage ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 2746-2762
Author(s):  
Jørgen Rose ◽  
Kirsten Engelund Thomsen

Historic and heritage buildings present a significant challenge when it comes to reducing energy consumption to mitigate climate change. These buildings need careful renovation, and increasing their energy efficiency is often associated with a high level of complexity, because consideration for heritage values can often reduce and impede possibilities and sometimes even rule out certain improvements completely. Despite these issues, many such renovation projects have already been carried out, and therefore the IEA SHC Task 59 project (Renovating Historic Buildings Towards Zero Energy) in cooperation with Interreg Alpine Space ATLAS has developed a tool for sharing these best-practice examples—the HiBERatlas (Historical Building Energy Retrofit Atlas). The Internet serves as a best-practice database for both individual energy efficiency measures and whole-building renovation projects. This paper presents two of the Danish projects featured in HiBERatlas. The first project, Ryesgade 30, is a Copenhagen apartment building with a preservation-worthy period brick façade. The second project is the Osram Building, a listed Copenhagen office building from 1959 with a protected façade, which today acts as a culture centre. Both renovation projects achieved significant energy savings and consequently CO2-emission reductions, and the indoor climate in both buildings have also improved significantly. Furthermore, a detailed analysis was carried out regarding possible window solutions and ventilation systems in Ryesgade 30, and for the Osram Building regarding daylighting technologies. This paper investigates the two renovation cases through the available measurement and calculation results before and after renovations and demonstrates that it is possible to reduce energy consumption significantly and at the same time improve the indoor climate without compromising the cultural values of buildings.

2008 ◽  
pp. 55-61 ◽  
Author(s):  
Bojana Prodanic ◽  
Aleksandar Jokic ◽  
Jelena Markovic ◽  
Zoltan Zavargo

General trend of free trade at the regional level as well as in the direction of European Union has motivated sugar factories located in Serbia to invest into technologies that are more efficient in order to make their products more competitive in the markets of Europe. Until 2005, the project of energy efficiency improvement in Serbian sugar factories was conducted in Crvenka and Zabalj. Now, they have energy consumption around 1 MJ/kg beet, in contrast to the previous consumption of 1.2 up to 1.5 MJ/kg beet. Further improvements are possible but investments would be high. A result of measurements taken during 2006, after the sugar factory "Donji Srem" - Pecinci was reconstructed showed that a considerable saving has been achieved. The first set of measurements showed that the energy consumption was 1.01 MJ/kg beet, which was 20% higher than intended, but at the same time energy savings were about 30% lower with respect to the values before the reconstruction.


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 781
Author(s):  
Federico Leon ◽  
Alejandro Ramos ◽  
S. Ovidio Perez-Baez

This article shows the optimization of the reverse osmosis process in seawater desalination plants, taking the example of the Canary Islands, where there are more than 320 units of different sizes, both private and public. The objective is to improve the energy efficiency of the system in order to save on operation costs as well as reduce the carbon and ecological footprints. Reverse osmosis membranes with higher surface area have lower energy consumption, as well as energy recovery systems to recover the brine pressure and introduce it in the system. Accounting for the operation, maintenance and handling of the membranes is also important in energy savings, in order to improve the energy efficiency. The energy consumption depends on the permeate water quality required and the model of the reverse osmosis membrane installed in the seawater desalination plant, as it is shown in this study.


2014 ◽  
Vol 655 ◽  
pp. 15-20 ◽  
Author(s):  
Sven Kreitlein ◽  
Tobias Rackow ◽  
Jörg Franke

This paper introduces a method for the assessment and evaluation of energy efficiency of the manufacturing processes in the production as well as a corporate and cross-industry comparison. Already today, energy-related characteristic value systems are used, which are related to the energy consumption of large electronic household appliances or are focusing on their production facilities. The energy efficiency value is a newly developed indicator and will provide valuable information about the energy efficiency of the production of various products, production operators, and consumers. In the following, the energy efficiency value, which is based on the approach of minimal value calculation, is presented in detail. The basic idea is the comparison and evaluation of energy efficiency based on the ratio of the theoretically required energy consumption to the actual energy consumption. Depending on the analysis of influencing factors, a model highlighting their dependencies could be established. The developed system hinges on a successive calculation of the minimum value. Each of these minimum types can be put in relation to the measured energy consumption. However, depending on the chosen basis, the conclusion and focus of the calculated key figure may vary. By using the real minimum as a basis, the actually existing energy savings become visible. The method will be put to the test through an exemplary application for processes in the fields of cutting technologies. This course of action allows for the validation of the developed energy efficiency value and reveals the potential of this method.


Author(s):  
Pawel Olszewski ◽  
Claus Borgnakke

The aim of this research is to estimate the influence of compressed air volumetric capacity on the energy consumption in systems equipped with oil-lubricated screw compressors. A mathematical model of oil-lubricated screw compressors has been proposed. The model is verified by comparing with real measurements, and overall uncertainty analysis is estimated. An in-house developed numerical code (c++) is used to calculate the energy consumption in 252,000 combinations. The final result can be used to estimate the energy efficiency of existing air systems and to assess potential energy savings due to changes in the operation of the system and its control strategy.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2166 ◽  
Author(s):  
Aniela Kaminska ◽  
Andrzej Ożadowicz

Energy used for lighting is one of the major components of total energy consumption in buildings. Nowadays, buildings have a great potential to reduce their energy consumption, but to achieve this purpose additional efforts are indispensable. In this study, the need for energy savings evaluation before the implementation of lighting control algorithms for a specified building is highlighted. Therefore, experimental tests have been carried out in a university building with laboratories and other rooms, equipped with KNX building automation system. A dimmable control strategy has been investigated, dependent on daylight illuminance. Moreover, a relationship between external and internal daylight illuminance levels has been evaluated as well. Based on the experimental results, the authors proposed a method for the rough estimation of electrical energy savings. Since, according to the EN 15232 standard, Building Automation and Control Systems (BACS) play an important role in buildings’ energy efficiency improvements, the BACS efficiency factors from this standard have been used to verify the experimental results presented in the paper. The potential to reduce energy consumption from lighting in non-residential buildings by 28% for offices and 24% for educational buildings has been confirmed, but its dependence on specific building parameters has been discussed as well.


2018 ◽  
Vol 882 ◽  
pp. 182-189
Author(s):  
Andreas Buswell ◽  
Wolfgang Schlüter

This paper describes the necessary measures to create an adaptable material flow and energy simulation for melting and die-casting plants. Based on two reference plants, the structural and intralogistical differences are emphasized and examined. These differences specify the necessary extensions to a previously created simulation environment in order to be able to analyze variable plant configurations. Special emphasis is put on the creation of a simplified energy model that allows the modeling of melting furnaces based on rudimentary datasets. Using the adaptable material flow and energy simulation two measures and their effects on the in-plant energy efficiency as well as productivity are analyzed. The simulation results suggest energy savings potentials for both plants and measures to increase productivity for one of the analyzed plants.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1816 ◽  
Author(s):  
Kwan Byum Maeng ◽  
Jiyeon Jung ◽  
Yoonmo Koo

The building sector is considered to be important for Korean energy issues as it accounts for approximately 20% of Korea’s final energy consumption. As one of Korea’s passive strategies in its emission reduction plan is reducing energy consumption through improvements in energy efficiency because the energy loss mostly occurs from window sets, this study aims to examine the preferences and role of the energy efficiency level of window sets in South Korea. Given that the lifespan of a building exceeds 20 years, a building’s energy efficiency significantly impacts accumulated energy savings. However, window sets affect not only energy efficiency, but also the interior appearance of the building; therefore, it is important to understand consumer preferences and to examine their effect on building energy reduction accordingly. Using a mixed logit model, this study analyzes window set preferences and energy savings. As a result, this study determines that consumers consider the energy efficiency level to be the second most important factor in determining window preference, following the cost of the window. In addition, this study found that the marginal willingness to pay for efficiency level 2 window sets compared to level 3 window sets is USD 1256. For level 1 window sets, this figure increases to USD 3140. Further, a scenario analysis is conducted to analyze the government incentive program’s effectiveness in encouraging consumers to purchasing higher energy efficiency more efficient products, and thus in promoting the eco-friendly consumption of in households. Taking into consideration of households’ willingness to pay and cost saving amount for using energy efficient window sets, the optimal value of government incentives of is found to be approximately USD 700 is found to be optimal.


2020 ◽  
Vol 81 (5) ◽  
pp. 876-890
Author(s):  
John N. Zvimba ◽  
Eustina V. Musvoto

Abstract About 55% of energy used in the South African water cycle is for wastewater treatment, with the bulk of this energy associated with aeration in biological processes. However, up to 15% of wastewater energy demand can be offset by energy generation from sludge (power and/or combined heat and power), while best practices adoption can deliver energy efficiency gains of between 5% and 25% in the water cycle. Advanced process modelling and simulation has been applied in this study as a tool to evaluate optimal process and aeration control strategies. This study further applied advanced modelling to investigate and predict the potential energy consumption and consumption cost pattern by the South African wastewater sector resulting from implementation of optimal process and aeration energy use reduction strategies in support of sustainable municipal wastewater management. Aeration energy consumption and cost savings of 9–45% were demonstrated to be achievable through implementation of energy conservation measures without compromising final effluent regulatory compliance. The study further provided significant potential future energy savings as high as 50% and 78% through implementation of simple and complex aeration energy conservation measures respectively. Generally, the model-predicted energy savings suggest that adoption of energy efficiency should be coupled with electricity generation from sludge in order to achieve maximum energy consumption and cost savings within the South African wastewater services sector.


2014 ◽  
Vol 655 ◽  
pp. 47-52 ◽  
Author(s):  
Moritz Hamacher ◽  
Johannes Boehner ◽  
Arnim Reger

This paper presents a flexible measuring system to identify energy efficiency potentials in the context of the ISO 50001 standard. On the basis of five essential requirements the flexible measuring system was structured into 4 modules which can be separately extended or modified. As the flexibility was in focus of the development this system it is able to measure the energy consumption on a very detailed level of the components of a machine. In addition it can also acquire measurement data of different other sensor signals like temperatures, flow rates etc. To evaluate the usability of the system in order to identify energy efficiency measures a use case was conducted. Results of the measurement data as well as possible energy savings of the investigated machinery are discussed at the end of this paper.


Sign in / Sign up

Export Citation Format

Share Document