scholarly journals Micropropagation of Feverfew (Tanacetum parthenium) and Quantification of Parthenolide Content in Its Micropropagated and Conventionally Grown Plants

Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 50
Author(s):  
Huda E. Mahood ◽  
Majeed Kadhem Abbas ◽  
Nisar Ahmad Zahid

Feverfew (Tanacetum parthenium) is a well-known multi-functional plant with anti-inflammatory, cardiotonic, antiangiogenic, and anticancer effects. The therapeutic value of this plant is due to its phytochemical constitutes, especially parthenolide. Tissue culture techniques have been applied to improve the bioactive components of many herbal plants. Hence, this study, was carried out to establish a protocol for micropropagation of the feverfew plant and to quantify parthenolide content in its micropropagated and conventionally grown plants. To establish an aseptic culture, different concentrations of sodium hypochlorite (NaOCl) were investigated for seed surface sterilization. Besides, the effects of plant growth regulators (PGRs) on the callus induction, shoot organogenesis from callus and in vitro rooting were evaluated. Additionally, the parthenolide yield of the micropropagated and conventionally grown plants was determined by using high-performance liquid chromatography (HPLC). The results showed that surface sterilization of feverfew seeds with 6% NaOCl for 15 min obtained 65.00 ± 2.69% aseptic seeds. Murashige and Skoog (MS) medium supplemented with 0.4 mg/L thidiazuron (TDZ) and 2 mg/L 2,4-dichlorophenoxy acetic acid (2,4-D) resulted in 86.00 ± 1.72% callus induction. The highest number of shoots (5.00 ± 0.15) per explant was obtained in the treatment of MS medium supplemented with 5 mg/L zeatin. MS medium fortified with 3 mg/L indole-3-butyric acid (IBA) produced the maximum number of roots per plantlet (8.90 ± 0.35). A total of 90% of the micropropagated plantlets survived when planted in perlite + peat moss (1:1 v/v); the micropropagated plantlets were successfully established in the ex vitro conditions. According to parthenolide analysis, its level was significantly higher in the micropropagated plants than conventionally grown plants. Among different solvents, ethanolic extraction obtained the highest parthenolide content of the feverfew plant. Hence, it can be concluded that micropropagation of feverfew could be applied to produce disease-free planting materials and to improve the parthenolide content of the feverfew plant.

2009 ◽  
Vol 24 ◽  
pp. 82-88 ◽  
Author(s):  
Saraswoti Aryal ◽  
Sanu Devi Joshi

Rauvolfia serpentina (L.) ex. Kurz is an important medicinal plant. Callus induction and regeneration was studied from stem explant of in-vitro grown plant of Rauvolfia serpentina(L.) Benth. ex Kurz (Apocynaceae) on Murashige Skoog (1962) medium supplemented with 1mg/l 2,4-Dichlorophenocy acetic acid (2,4-D) and 1mg/l Kinetin (Kn). Vigorous growth of callus occurs after 4 weeks of culture. Callus was sub-cultured on Murashige and Skoog (MS) medium supplemented with different concentration of 2, 4-D (0.5-3.0 mg/l) and 10% coconut milk. Regeneration of plantlets occurred on MS medium containing 3 mg/1 of 2, 4-D and 10% coconut milk. These plantlets were rooted on MS medium supplemented with 1 mg/l IAA .The regenerated plantlets were able to grow on soil after short period ofacclimatization. Key words: Explant; In-vitro culture; MS medium;  2, 4 Dichlorophenoxy acetic acid; Kinetin; Callus; Tissue culture; Coconut milk. Journal of Natural History Museum Vol. 24, 2009 Page: 82-88


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 320
Author(s):  
Nisar Ahmad Zahid ◽  
Hawa Z.E. Jaafar ◽  
Mansor Hakiman

Ginger (Zingiber officinale Roscoe) var. Bentong is a monocotyledon plant that belongs to the Zingiberaceae family. Bentong ginger is the most popular cultivar of ginger in Malaysia, which is conventionally propagated by its rhizome. As its rhizomes are the economic part of the plant, the allocation of a large amount of rhizomes as planting materials increases agricultural input cost. Simultaneously, the rhizomes’ availability as planting materials is restricted due to the high demand for fresh rhizomes in the market. Moreover, ginger propagation using its rhizome is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied to produce disease-free planting materials of ginger to overcome these problems. Hence, the in vitro-induced microrhizomes are considered as alternative disease-free planting materials for ginger cultivation. On the other hand, Bentong ginger has not been studied for its microrhizome induction. Therefore, this study was conducted to optimize sucrose and plant growth regulators (PGRs) for its microrhizome induction. Microrhizomes were successfully induced in Murashige and Skoog (MS) medium supplemented with a high sucrose concentration (>45 g L−1). In addition, zeatin at 5–10 µM was found more effective for microrhizome induction than 6-benzylaminopurine (BAP) at a similar concentration. The addition of 7.5 µM 1-naphthaleneacetic acid (NAA) further enhanced microrhizome formation and reduced sucrose’s required dose that needs to be supplied for efficient microrhizome formation. MS medium supplemented with 60 g L−1 sucrose, 10 µM zeatin and 7.5 µM NAA was the optimum combination for the microrhizome induction of Bentong ginger. The in vitro-induced microrhizomes sprouted indoors in moist sand and all the sprouted microrhizomes were successfully established in field conditions. In conclusion, in vitro microrhizomes can be used as disease-free planting materials for the commercial cultivation of Bentong ginger.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3229
Author(s):  
Mat Yunus Najhah ◽  
Hawa Z. E. Jaafar ◽  
Jaafar Juju Nakasha ◽  
Mansor Hakiman

This study aims to investigate whether the in vitro-cultured L. pumila var. alata has higher antioxidant activity than its wild plant. An 8-week-old L. pumila var. alata nodal segment and leaf explants were cultured onto Murashige and Skoog (MS) medium supplemented with various cytokinins (zeatin, kinetin, and 6-benzylaminopurine (BAP)) for shoot multiplication and auxins (2,4-dichlorophenoxyacetic acid (2,4-D) and picloram) for callus induction, respectively. The results showed that 2 mg/L zeatin produced the optimal results for shoot and leaf development, and 0.5 mg/L 2,4-D produced the highest callus induction results (60%). After this, 0.5 mg/L 2,4-D was combined with 0.25 mg/L cytokinins and supplemented to the MS medium. The optimal results for callus induction (100%) with yellowish to greenish and compact texture were obtained using 0.5 mg/L 2,4-D combined with 0.25 mg/L zeatin. Leaves obtained from in vitro plantlets and wild plants as well as callus were extracted and analyzed for their antioxidant activities (DPPH and FRAP methods) and polyphenolic properties (total flavonoid and total phenolic content). When compared with leaf extracts of in vitro plantlets and wild plants of L. pumila var. alata, the callus extract displayed significantly higher antioxidant activities and total phenolic and flavonoid content. Hence, callus culture potentially can be adapted for antioxidant and polyphenolic production to satisfy pharmaceutical and nutraceutical needs while conserving wild L. pumila var. alata.


Biologia ◽  
2010 ◽  
Vol 65 (4) ◽  
Author(s):  
Sara Rostampour ◽  
Haleh Sohi ◽  
Ali Dehestani

AbstractPersian poppy (Papaver bracteatum Lindl.) is an important commercial source of medicinal opiates and related compounds. In this research, calli were induced from seeds, roots, cotyledons and hypocotyls of P. bracteatum at a high efficiency. The optimized callus induction media consisted of the Murashige and Skoog (MS) basic media supplemented with 1.0 mg/L 2, 4-dichlorophenoxyacetic acid (2,4-D), 0.1 mg/L kinetin and 15 mg/L ascorbic acid. The concentrations of 2,4-D and ascorbic acid were found critical to callus induction and proliferation. Subsequent subcultures resulted in excellent callus proliferation. Ascorbic acid at concentration 15 mg/L increased the callus proliferation significantly. Maximum callus growth was achieved when the explants were incubated at 25°C. MS salts at full strength were found inhibitory for callus induction, while ľ MS salts were found to favor callus induction. Shoot regeneration of calli in vitro was achieved on ľ MS medium containing 0.5 mg/L benzylamine purine and 1.0 mg/L naphthalene acetic acid. Analysis of alkaloid extracts from Persian poppy tissues by high-performance liquid chromatography showed that thebaine accumulated in the tissues of plants. The thebaine alkaloid profile of the Persian poppy is a well-defined model to evaluate the potential for metabolic engineering of thebaine production in P. bracteatum.


2015 ◽  
Vol 77 (24) ◽  
Author(s):  
Siti Suhaila A. Rahman ◽  
Norwati Muhammad ◽  
Nor Hasnida Hassan ◽  
Haliza Ismail ◽  
Nazirah Abdullah ◽  
...  

Neolamarckia cadamba (kelempayan) is a multipurpose and fast growing timber species. The tree is grown for timber, paper-making and as ornamental plant. It is reported that its barks and leaves possesed medicinal values and its flowers are used in perfumes. The species is also known to be suitable for plywood, packing case, toys and short-fibred pulp. Therefore, mass production of high quality planting material of N. cadamba is important to support plantation program of this species. Here we presented mass production of N. cadamba through tissue culture techniques. Nodal segments derived from in vitro germinated seeds were used and induced direct organogenesis to produce shoots and roots using MS media (1962) and plant growth regulators (BAP and IBA) that are relatively cheaper than previously used methods. The tissue culture technique of N. cadamba developed may help in ensuring supply of planting materials that are feasible for commercial plantation purposes.


2012 ◽  
Vol 40 (2) ◽  
pp. 140 ◽  
Author(s):  
Hafiz Mamoon REHMAN ◽  
Iqrar Ahmad RANA ◽  
Siddra IJAZ ◽  
Ghulam MUSTAFA ◽  
Faiz Ahmad JOYIA ◽  
...  

Dalbergia sissoo Roxb. ex DC. (Sissoo) is a native forest tree species in Pakistan. Many ecological and economical uses are associated with this premier timber species, but dieback disease is of major concern. The objective of this study was to develop a protocol for in vitro regeneration of Sissoo that could serve as target material for genetic transformation, in order to improve this species. Callus formation and plantlet regeneration was achieved by culturing cotyledons, immature seeds, and mature embryos on a modified Murashige and Skoog (1962) (MS) medium supplemented with plant growth regulators. Callus induction medium containing 2.71 ?M 2, 4-dichlorophenoxyacetic acid (2,4-D) and 0.93 ?M kinetin produced better callus on all explants tested compared to other treatments, such as 8.88 ?M 6-benzylaminopurine (BA) and 2.69 ?M ?-naphthalene acetic acid (NAA), or 2.71 ?M 2, 4-D and 2.69 ?M NAA. Shoot regeneration was best on MS medium containing 1.4 ?M NAA and 8.88 ?M BA compared to other treatments, such as 1.4 ?M NAA and 9.9 ?M kinetin, or 2.86 ?M indole-3-acetic acid and 8.88 ?M BA. Murashige and Skoog medium containing 1.4 NAA ?M and 8.88 ?M BA was better in general for regeneration regardless of callus induction medium and the type of explant used. Rooting was best on half-strength MS medium with 7.35 ?M indole-3-butyric acid. Regenerated plantlets were acclimatized for plantation in the field. Preliminary genetic transformation potential of D. sissoo was evaluated by particle bombardment of callus explants with a pUbiGus vector. The bombarded tissue showed transient Gus activity 1week after bombardment. Transformation of this woody tree is possible provided excellent regeneration protocols. The best combination for regeneration explained in this study is one of such protocols.


2017 ◽  
Vol 4 (2) ◽  
pp. 52-56
Author(s):  
Mallika Devi T

In the present study the protocol for callus induction and regeneration in Azima tetracantha has been developed in culture medium. The young apical leaf explants were used for callus induction on MS medium containing BAP and NAA at 1.0 and 0.4mgl-1 respectively showed maximum callus induction (73%). The amount of callus responded for shoot formation (74%) was obtained in the MS medium containing BAP (1.5 mgl-1) and NAA (0.3mgl-1).The elongated shoots were rooted on half strength medium supplemented with IBA (1.5 mgl-1) and Kn (0.4 mgl-1) for shoots rooted. Regenerated plantlets were successfully acclimatized and hardened off inside the culture and then transferred to green house with better survival rate.


2021 ◽  
Vol 883 (1) ◽  
pp. 012075
Author(s):  
R Purnamaningsih ◽  
D Sukmadjaja ◽  
S Suhesti ◽  
S Rahayu

Abstract Six mutant clones of sugarcane with high productivity have been produced through tissue culture techniques combined with mutations using gamma-ray irradiation and Ethyl Methane Sulfonate. The six mutant clones have been tested for stability in the field. They are proven to have high productivity and yields, so that they are very potential to be developed as superior varieties. To support the planting material sufficiency of these clones, an efficient propagation method was needed. Media formulations with different physical properties and composition of growth regulators were tested to obtain high seedling propagation rates. The media formulation for callus induction was Murashige dan Skoog (MS) + 3 mg/l 2,4-D + 3 g/l casein hydrolysate + 3% sucrose and for shoot regeneration was MS + 0,5 mg/l BA + 0,1 mg/l IBA + 100 mg/l PVP and 2% sucrose. Shoot proliferation was carried out on MS liquid (1, ½) + (0.3; 0.5 mg/l) BA + 0.1 mg/l IBA + 1 mg/l Kinetin + (0; 0.5 mg/l) GA3+ sucrose 2%. The results showed that callus induction, callus regeneration, and shoot proliferation of sugarcane mutant clones were influenced by the genotype and medium composition. The fastest callus induction was obtained from the MSP-4 clone (5.82 days), and the longest was MSB-7 (8.82 days). The largest callus diameter was obtained from MSB-6 clone on MS medium containing 1 mg/l BA, 100 mg/l PVP, and 2% sucrose. The highest number of shoots was obtained from the MSB-6 clone, while the least number of shoots conducted from the MSB-8 clone. The MSB-8 clones were more difficult to regenerate compared to the others. The best media formulation for shoot proliferation was ½ MS containing 0.5 mg/l BA, 1 mg/l Kinetin, and 0.1 mg/l IBA, while the best formulation for rooting was ½ MS.


2018 ◽  
Vol 6 ◽  
pp. 1185-1191
Author(s):  
Minh Van Tran

Phalaenopsis spp. was regularly produced through micropropagation by protocorm like bodies (PLBs); micropropagation takes a lot of labor, and has high cost of seedlings, energy and material. The purpose of this paper was to study the new technique of using in vitro embryogenesis culturing for microprogation. The method involved using protocorm like bodies as planting materials. PLBs were cut into slices and placed on the medium for callus initiation. The callus was initiated on the medium MS + BA (0.1 mg/l) supplemented with NAA (1 mg/l) or 2,4D (1 mg/l) and was proliferated on the medium MS + BA (0.1 mg/l) supplemented with NAA (1 mg/l). Somatic cell suspensions were initiated and proliferated on the medium MS + BA (0.1 mg/l) supplemented with NAA (0.5, 1 mg/l). Somatic cell suspensions were differentiated to embryonic cell suspensions on the MS medium supplemented with NAA (0.1 mg/l) + BA (0.5 mg/l). Embryonic cell suspensions were plated and regenerated on the medium: 1/2MS supplemented with NAA (0.1 mg/l) + BA (0.5 mg/l). Micropropagation of Phalaenopsis sp. via the embryogenesis technique was set up to produce 5,800 plantlets per one liter of somatic embryogenesis suspension.


2011 ◽  
Vol 63 (1) ◽  
pp. 209-215 ◽  
Author(s):  
S. Uranbey

A high frequency of bulblet regeneration was achieved for the endemic and endangered ornamental plant Muscari azureum using immature embryos. Immature embryos of M. azureum were cultured on a callus induction medium consisting of N6 mineral salts and vitamins, 400 gL-1 casein + 40 gL-1 sucrose + 2 mgL-1 L-proline, 2 mgL-1 2,4-D and 2 gL-1 Gelrite. Then the embryogenic callus clusters were transferred to a bulblet induction medium consisting of MS mineral salts and vitamins containing different concentrations and combinations of BAP, KIN, TDZ, Zeatin, IAA, NAA, 30 gL-1 sucrose and 7 gL-1 agar. Prolific bulblet multiplication (over 13 bulblets/embryo) was achieved from immature embryos after 5-6 months of culture initiation. Well-developed bulblets were excised and individually rooted on ? strength MS medium supplemented with 1 mgL-1 IBA, 0.5 gL-1activated charcoal, 20 gL-1sucrose and 6 gL-1agar and acclimatized. <br><br><font color="red"><b> This article has been retracted. Link to the retraction <u><a href="http://dx.doi.org/10.2298/ABS150608072E">10.2298/ABS150608072E</a><u></b></font>


Sign in / Sign up

Export Citation Format

Share Document