scholarly journals Applications of Next Generation Sequencing to the Analysis of Familial Breast/Ovarian Cancer

2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Veronica Zelli ◽  
Chiara Compagnoni ◽  
Katia Cannita ◽  
Roberta Capelli ◽  
Carlo Capalbo ◽  
...  

Next generation sequencing (NGS) provides a powerful tool in the field of medical genetics, allowing one to perform multi-gene analysis and to sequence entire exomes (WES), transcriptomes or genomes (WGS). The generated high-throughput data are particularly suitable for enhancing the understanding of the genetic bases of complex, multi-gene diseases, such as cancer. Among the various types of tumors, those with a familial predisposition are of great interest for the isolation of novel genes or gene variants, detectable at the germline level and involved in cancer pathogenesis. The identification of novel genetic factors would have great translational value, helping clinicians in defining risk and prevention strategies. In this regard, it is known that the majority of breast/ovarian cases with familial predisposition, lacking variants in the highly penetrant BRCA1 and BRCA2 genes (non-BRCA), remains unexplained, although several less penetrant genes (e.g., ATM, PALB2) have been identified. In this scenario, NGS technologies offer a powerful tool for the discovery of novel factors involved in familial breast/ovarian cancer. In this review, we summarize and discuss the state of the art applications of NGS gene panels, WES and WGS in the context of familial breast/ovarian cancer.

Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 584 ◽  
Author(s):  
Marica Garziera ◽  
Rossana Roncato ◽  
Marcella Montico ◽  
Elena De Mattia ◽  
Sara Gagno ◽  
...  

Next-generation sequencing (NGS) technology has advanced knowledge of the genomic landscape of ovarian cancer, leading to an innovative molecular classification of the disease. However, patient survival and response to platinum-based treatments are still not predictable based on the tumor genetic profile. This retrospective study characterized the repertoire of somatic mutations in advanced ovarian cancer to identify tumor genetic markers predictive of platinum chemo-resistance and prognosis. Using targeted NGS, 79 primary advanced (III–IV stage, tumor grade G2-3) ovarian cancer tumors, including 64 high-grade serous ovarian cancers (HGSOCs), were screened with a 26 cancer-genes panel. Patients, enrolled between 1995 and 2011, underwent primary debulking surgery (PDS) with optimal residual disease (RD < 1 cm) and platinum-based chemotherapy as first-line treatment. We found a heterogeneous mutational landscape in some uncommon ovarian histotypes and in HGSOC tumor samples with relevance in predicting platinum sensitivity. In particular, we identified a poor prognostic signature in patients with HGSOC harboring concurrent mutations in two driver actionable genes of the panel. The tumor heterogeneity described, sheds light on the translational potential of targeted NGS approach for the identification of subgroups of patients with distinct therapeutic vulnerabilities, that are modulated by the specific mutational profile expressed by the ovarian tumor.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1364 ◽  
Author(s):  
Diego Carbonell ◽  
Julia Suárez-González ◽  
María Chicano ◽  
Cristina Andrés-Zayas ◽  
Juan Carlos Triviño ◽  
...  

Molecular diagnosis of myeloid neoplasms (MN) is based on the detection of multiple genetic alterations using various techniques. Next-generation sequencing (NGS) has been proved as a useful method for analyzing many genes simultaneously. In this context, we analyzed diagnostic samples from 121 patients affected by MN and ten relapse samples from a subset of acute myeloid leukemia patients using two enrichment-capture NGS gene panels. Pathogenicity classification of variants was enhanced by the development and application of a custom onco-hematology score. A total of 278 pathogenic variants were detected in 84% of patients. For structural alterations, 82% of those identified by cytogenetics were detected by NGS, 25 of 31 copy number variants and three out of three translocations. The detection of variants using NGS changed the diagnosis of seven patients and the prognosis of 15 patients and enabled us to identify 44 suitable candidates for clinical trials. Regarding AML, six of the ten relapsed patients lost or gained variants, comparing with diagnostic samples. In conclusion, the use of NGS panels in MN improves genetic characterization of the disease compared with conventional methods, thus demonstrating its potential clinical utility in routine clinical testing. This approach leads to better-adjusted treatments for each patient.


2019 ◽  
Vol 73 (3) ◽  
pp. 168-171 ◽  
Author(s):  
Caterina Fumagalli ◽  
Alessandra Rappa ◽  
Chiara Casadio ◽  
Ilaria Betella ◽  
Nicoletta Colombo ◽  
...  

BackgroundWith the approval of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib for newly diagnosed, breast cancer gene (BRCA)1/2 mutated, ovarian cancer women, the assessment of BRCA1/2 tumour status will be shortly required at the time of diagnosis.AimTo investigate the feasibility of next-generation sequencing (NGS)-based BRCA tumour test on cytological specimens from ovarian cancer ascites.MethodsWe evaluated the BRCA1/2 status on neoplastic ascites and corresponding tumour tissue of 11 patients with ovarian cancer, using the NGS ‘Oncomine BRCA Research Assay’.ResultsThe NGS-based BRCA test on cytological samples had a success rate of 100%, with 11 of 11 concordant BRCA1/2 results between ascites and tumour tissues analyses, including two wild type samples and nine cases harbouring somatic or germline variants.ConclusionBRCA test may be performed on ovarian cancer ascites, reproducing BRCA1/2 tumour status and representing a useful tool for clinical decision-making.


Sign in / Sign up

Export Citation Format

Share Document