scholarly journals Evaluation of General Circulation Models over the Upper Ouémé River Basin in the Republic of Benin

Hydrology ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 11 ◽  
Author(s):  
André Attogouinon ◽  
Agnidé E. Lawin ◽  
Jean-François Deliège

This study assessed the performance of eight general circulation models (GCMs) implemented in the upper Ouémé River basin in Benin Republic (West Africa) during the Fifth Assessment Report on Climate Change. Historical rainfall simulations of the climate model of Rossby Regional Centre (RCA4) driven by eight Coupled Model Intercomparison Project (CMIP5) GCMs over a 55-year period (1951 to 2005) are evaluated using the observational data set. Apart from daily rainfall, other rainfall parameters calculated from observed and simulated rainfall were compared. U-test and other statistical criteria (R2, MBE, MAE, RMSE and standard of standard deviations) were used. According to the results, the simulations correctly reproduce the interannual variability of precipitation in the upper Ouémé River basin. However, the models tend to produce drizzle. Especially, the overestimation of April, May and November rains not only explains the overestimation of seasonal and annual cumulative rainfall but also the early onset of the rainy season and its late withdrawal. However, we noted that this overestimation magnitude varies from one model to another. As for extreme rainfall indices, the models reproduced them poorly. The CanESM2, CNRM-CM5 and EC-EARTH models perform well for daily rainfall. A trade-off is formulated to select the common MPI-ESM-LR, GFDL-ESM2M, NorESM1-M and CanESM2 models for different rainfall parameters for the reliable projection of rainfall in the area. However, the MPI-ESM-LR model is a valuable tool for studying future climate change.

2018 ◽  
Vol 10 (1) ◽  
pp. 78-88 ◽  
Author(s):  
Jian Sha ◽  
Zhong-Liang Wang ◽  
Yue Zhao ◽  
Yan-Xue Xu ◽  
Xue Li

Abstract The vulnerability of the natural water system in cold areas to future climate change is of great concern. A coupled model approach was applied in the headwater watershed area of Yalu River in the northeastern part of China to estimate the response of hydrological processes to future climate change with moderate data. The stochastic Long Ashton Research Station Weather Generator was used to downscale the results of general circulation models to generate synthetic daily weather series in the 2050s and 2080s under various projected scenarios, which were applied as input data of the Generalized Watershed Loading Functions hydrological model for future hydrological process estimations. The results showed that future wetter and hotter weather conditions would have positive impacts on the watershed runoff yields but negative impacts on the watershed groundwater flow yields. The freezing period in winter would be shortened with earlier snowmelt peaks in spring. These would result in less snow cover in winter and shift the monthly allocations of streamflow with more yields in March but less in April and May, which should be of great concern for future local management. The proposed approach of the coupled model application is effective and can be used in other similar areas.


2013 ◽  
Vol 17 (19) ◽  
pp. 1-22 ◽  
Author(s):  
G. T. Aronica ◽  
B. Bonaccorso

Abstract In recent years, increasing attention has been paid to hydropower generation, since it is a renewable, efficient, and reliable source of energy, as well as an effective tool to reduce the atmospheric concentrations of greenhouse gases resulting from human activities. At the same time, however, hydropower is among the most vulnerable industries to global warming, because water resources are closely linked to climate changes. Indeed, the effects of climate change on water availability are expected to affect hydropower generation with special reference to southern countries, which are supposed to face dryer conditions in the next decades. The aim of this paper is to qualitatively assess the impact of future climate change on the hydrological regime of the Alcantara River basin, eastern Sicily (Italy), based on Monte Carlo simulations. Synthetic series of daily rainfall and temperature are generated, based on observed data, through a first-order Markov chain and an autoregressive moving average (ARMA) model, respectively, for the current scenario and two future scenarios at 2025. In particular, relative changes in the monthly mean and standard deviation values of daily rainfall and temperature at 2025, predicted by the Hadley Centre Coupled Model, version 3 (HadCM3) for A2 and B2 greenhouse gas emissions scenarios, are adopted to generate future values of precipitation and temperature. Synthetic series for the two climatic scenarios are then introduced as input into the Identification of Unit Hydrographs and Component Flows from Rainfall, Evapotranspiration and Streamflow Data (IHACRES) model to simulate the hydrological response of the basin. The effects of climate change are investigated by analyzing potential modification of the resulting flow duration curves and utilization curves, which allow a site's energy potential for the design of run-of-river hydropower plants to be estimated.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2360 ◽  
Author(s):  
Pablo Blanco-Gómez ◽  
Patricia Jimeno-Sáez ◽  
Javier Senent-Aparicio ◽  
Julio Pérez-Sánchez

This study assessed how changes in terms of temperature and precipitation might translate into changes in water availability and droughts in an area in a developing country with environmental interest. The hydrological model Soil and Water Assessment Tool (SWAT) was applied to analyze the impacts of climate change on water resources of the Guajoyo River Basin in El Salvador. El Salvador is in one of the most vulnerable regions in Latin America to the effects of climate change. The predicted future climate change by two climate change scenarios (RCP 4.5 and RCP 8.5) and five general circulation models (GCMs) were considered. A statistical analysis was performed to identify which GCM was better in terms of goodness of fit to variation in means and standard deviations of the historical series. A significant decreasing trend in precipitation and a significant increase in annual average temperatures were projected by the middle and the end of the twenty–first century. The results indicated a decreasing trend of the amount of water available and more severe droughts for future climate scenarios with respect to the base period (1975–2004). These findings will provide local water management authorities useful information in the face of climate change to help decision making.


2021 ◽  
Author(s):  
Justus Contzen ◽  
Thorsten Dickhaus ◽  
Gerrit Lohmann

Abstract. Coupled general circulation models are of paramount importance to assess quantitatively the magnitude of future climate change. Usual methods for validating climate models include the evaluation of mean values and covariances, but less attention is directed to the evaluation of extremal behaviour. This is a problem because many severe consequences of climate changes are due to climate extremes. We present a method for model validation in terms of extreme values based on classical extreme value theory. We further discuss a clustering algorithm to detect spacial dependencies and tendencies for concurrent extremes. To illustrate these methods, we analyse precipitation extremes of the AWI-ESM global climate model compared to the reanalysis data set CRU TS4.04. The methods presented here can also be used for the comparison of model ensembles, and there may be further applications in palaeoclimatology.


2011 ◽  
Vol 15 (20) ◽  
pp. 1-25 ◽  
Author(s):  
Roland J. Viger ◽  
Lauren E. Hay ◽  
Steven L. Markstrom ◽  
John W. Jones ◽  
Gary R. Buell

Abstract The potential effects of long-term urbanization and climate change on the freshwater resources of the Flint River basin were examined by using the Precipitation-Runoff Modeling System (PRMS). PRMS is a deterministic, distributed-parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land cover on streamflow and multiple intermediate hydrologic states. Precipitation and temperature output from five general circulation models (GCMs) using one current and three future climate-change scenarios were statistically downscaled for input into PRMS. Projections of urbanization through 2050 derived for the Flint River basin by the Forecasting Scenarios of Future Land-Cover (FORE-SCE) land-cover change model were also used as input to PRMS. Comparison of the central tendency of streamflow simulated based on the three climate-change scenarios showed a slight decrease in overall streamflow relative to simulations under current conditions, mostly caused by decreases in the surface-runoff and groundwater components. The addition of information about forecasted urbanization of land surfaces to the hydrologic simulation mitigated the decreases in streamflow, mainly by increasing surface runoff.


2021 ◽  
Vol 14 (1) ◽  
pp. 334
Author(s):  
Keerthi Chadalavada ◽  
Sridhar Gummadi ◽  
Koteswara Rao Kundeti ◽  
Dakshina Murthy Kadiyala ◽  
Kumara Charyulu Deevi ◽  
...  

Given the wide use of the multi-climate model mean (MMM) for impact assessment studies, this work examines the fidelity of Coupled Model Intercomparison Project Phase 5 (CMIP5) in simulating the features of Indian summer monsoons as well as the post-rainy seasons for assessing the possible impacts of climate change on post-rainy season sorghum crop yields across India. The MMM simulations captured the spatial patterns and annual cycles of rainfall and surface air temperatures. However, bias was observed in the precipitation amounts and daily rainfall intensity. The trends in the simulations of MMM for both precipitation and temperatures were less satisfactory than the observed climate means. The Crop Environment Resource Synthesis (CERES)-sorghum model was used to estimate the potential impacts of future climate change on post-rainy season sorghum yield values. On average, post-rainy season sorghum yields are projected to vary between −4% and +40% as well as +10% and +59% in the near future (2040–2069) for RCP 4.5 and RCP 8.5, respectively, and between +20% and +70% (RCP 4.5) as well as +38% and +89% (RCP 8.5) in the far future (2070–2099). Even though surface air temperatures are increasing in future climate change projections, the findings suggest that an increase in the post-rainy season sorghum yields was due to an increase in the rainfall amounts up to 23% and an increase in the atmospheric CO2 levels by the end of the 21st century. The results suggest that the projected climate change during the post-rainy season over India is an opportunity for smallholders to capitalize on the increase in rainfall amounts and further increase sorghum yields with appropriate crop management strategies.


2011 ◽  
Vol 2 (1) ◽  
pp. 72-83 ◽  
Author(s):  
Heerbod Jahanbani ◽  
Lee Teang Shui ◽  
Alireza Massah Bavani ◽  
Abdul Halim Ghazali

There are many factors of uncertainty regarding the impact of climate change on reference evapotranspiration (ETo). The accuracy of the results is strictly related to these factors and ignoring any one of them reduces the precision of the results, and reduces their applicability for decision makers. In this study, the uncertainty related to two ETo models, the Hargreaves-Samani (HGS) and Artificial Neural Network (ANN), and two Atmosphere-Ocean General Circulation Models (AOGCMs), Hadley Centre Coupled Model, version 3 (HadCM3) climatic model and the Canadian Global Climate Model, version 3 (CGCM3) climatic model under climate change, was evaluated. The models predicted average temperature increases by 2010 to 2039 of 0.95 °C by the HadCM3 model and 1.13°C by the CGCM3 model under the A2 scenario relative to observed temperature. Accordingly, the models predicted average ETo would increase of 0.48, 0.60, 0.50 and 0.60 (mm/day) by 2010 to 2039 projected by four methods (by introducing the temperature of the HadCM3-A2 model and the CGCM3-A2 to ANN and HGS) relative to ETo of the observed period. The results showed that uncertainty of the AOGCMs is more than that of the ETo models applied in this study.


2020 ◽  
Vol 15 (3) ◽  
pp. 324-334 ◽  
Author(s):  
Hnin Thiri Myo ◽  
Win Win Zin ◽  
Kyi Pyar Shwe ◽  
Zin Mar Lar Tin San ◽  
Akiyuki Kawasaki ◽  
...  

Climate change affects both the temperature and precipitation, leading to changes in river runoff. The Bago River basin is one of the most important agricultural regions in the Ayeyarwady Delta of Myanmar, and this paper aims to evaluate the impact of climate change on it. Linear scaling was used as the bias-correction method for ten general circulation models (GCMs) participating in the fifth phase of the Coupled Model Intercomparison Project. Future climate scenarios are predicted for three 27-year periods: the near future (2020–2046), middle future (2047–2073), and far future (2074–2100) with a baseline period of (1981–2005) under two Representative Concentration Pathway (RCP) scenarios: RCP4.5 and RCP8.5 of the IPCC Assessment Report 5 (AR5). The Hydrologic Engineering Center-Hydrologic Modeling System model is used to predict future discharge changes for the Bago River considering future average precipitation for all three future periods. Among the GCMs used to simulate meteorological data in the Ayeyarwady Delta zone, the Model for Interdisciplinary Research on Climate-Earth System is the most suitable. It predicts that average monthly precipitation will fluctuate and that average annual precipitation will increase. Both average monthly and annual temperatures are expected to increase at the end of the 21st century under RCP4.5 and RCP8.5 scenarios. The simulation shows that the Bago River discharge will increase for all three future periods under both scenarios.


2013 ◽  
Vol 6 (2) ◽  
pp. 3349-3380 ◽  
Author(s):  
P. B. Holden ◽  
N. R. Edwards ◽  
P. H. Garthwaite ◽  
K. Fraedrich ◽  
F. Lunkeit ◽  
...  

Abstract. Many applications in the evaluation of climate impacts and environmental policy require detailed spatio-temporal projections of future climate. To capture feedbacks from impacted natural or socio-economic systems requires interactive two-way coupling but this is generally computationally infeasible with even moderately complex general circulation models (GCMs). Dimension reduction using emulation is one solution to this problem, demonstrated here with the GCM PLASIM-ENTS. Our approach generates temporally evolving spatial patterns of climate variables, considering multiple modes of variability in order to capture non-linear feedbacks. The emulator provides a 188-member ensemble of decadally and spatially resolved (~ 5° resolution) seasonal climate data in response to an arbitrary future CO2 concentration and radiative forcing scenario. We present the PLASIM-ENTS coupled model, the construction of its emulator from an ensemble of transient future simulations, an application of the emulator methodology to produce heating and cooling degree-day projections, and the validation of the results against empirical data and higher-complexity models. We also demonstrate the application to estimates of sea-level rise and associated uncertainty.


2021 ◽  
Author(s):  
Sneha Santy ◽  
Pradeep Mujumdar ◽  
Govindasamy Bala

<p>High industrial discharge, excessive agricultural activities, untreated sewage disposal make the Kanpur region one of the most contaminated stretches of the Ganga river. This study analyses water quality for the combined future climate change and land use land cover scenarios for mid-century for a 238km long Kanpur stretch of Ganga river. Climate change projections from 21 General Circulation Models for the scenarios of RCP 4.5 and RCP 8.5 are considered and Land use Land Cover (LULC) projections are made with QGIS software. Streamflow and water temperature are modelled using the HEC-HMS model and a Water-Air temperature regression model, respectively. Water quality analysis is simulated using the QUAL2K model in terms of nine water quality parameters, dissolved oxygen, biochemical oxygen demand (BOD), ammonia nitrogen, nitrate nitrogen, total nitrogen, organic phosphorus, inorganic phosphorus, total phosphorus and faecal coliform. Climate change impact alone is projected to result in degraded water quality in the future. Combined climate change and LULC change may further degrade water quality, especially at the study area's critical locations. Our study will provide guidance to policymakers to safeguard the Ganga river from further pollution.</p>


Sign in / Sign up

Export Citation Format

Share Document