scholarly journals Validating and Refining EPA’s Traffic Exposure Screening Measure

Author(s):  
Dana Rowangould ◽  
Greg Rowangould ◽  
Elena Craft ◽  
Deb Niemeier

Exposure to high air pollutant concentrations results in significant health risks. Many communities of color and low-income communities face disproportionately higher levels of air pollution exposure. Environmental justice (EJ) screening tools play a critical role in focusing early attention on areas with a high likelihood of disparate health impacts. In 2015, the United States Environmental Protection Agency (US EPA) released EJScreen, a screening tool with indicators of a range of pollution burdens across the US. However, little is known about the accuracy of the screening estimates of pollution exposure. This study compares EJScreen’s traffic proximity air quality metric to dispersion modeling results. Using the area around the Houston Ship Channel, we conduct fine-grained air pollution dispersion modeling to evaluate how closely EJScreen’s indicator approximates estimated roadway air pollution concentrations. We find low correlation between modeled concentrations and the EJScreen roadway air pollution indicator. We extend EJScreen’s roadway air pollution screening method in three ways: (1) using a smaller unit of analysis, (2) accounting for the length of each road segment, and (3) accounting for wind direction. Using the Houston region, we use two of the methods and show that the proposed extensions provide a more accurate transportation air pollution screening assessment at the regional and local level.

2018 ◽  
Vol 29 (6) ◽  
pp. 563-572 ◽  
Author(s):  
Trang VoPham ◽  
Kimberly A. Bertrand ◽  
Rulla M. Tamimi ◽  
Francine Laden ◽  
Jaime E. Hart

Author(s):  
Regan F. Patterson ◽  
Robert A. Harley

Freeway rerouting and replacement with a street-level boulevard are urban transportation policies, that may help redress disproportionate air pollution burdens resulting from freeway construction that took place during the mid-20th century. However, environmental justice activism for freeway rerouting and urban green space creation may have the unintended consequence of environmental gentrification. In this paper, we investigate the effects of freeway routing decisions on exposure to traffic-related air pollution and neighborhood socioeconomic and demographic change. We focus on the effects of rerouting the Cypress Freeway in West Oakland, along with the construction of a street-level boulevard (Mandela Parkway), on the original freeway alignment. The impacts of two rebuild scenarios, freeway rebuild-in-place and reroute, on near-roadway NOx and BC concentrations are compared. We also assess changes in demographics and land use in West Oakland, between the time when the Cypress Freeway was damaged by a major earthquake and after completion of Mandela Parkway. Our research indicates that freeway rerouting reduced annual average concentrations of both NOx (−38% ± 4%) and BC (−25% ± 2%) along the Mandela Parkway alignment. However, there is evidence of environmentally driven neighborhood change, given that there are larger decreases in the long-time Black population (−28%) and increases in property values (184%) along Mandela Parkway, compared to West Oakland as a whole. There are some attributes along the Mandela Parkway that enable low-income residents to live in proximity to the street-level boulevard, such as affordable housing.


2015 ◽  
Vol 15 (19) ◽  
pp. 11411-11432 ◽  
Author(s):  
G. Janssens-Maenhout ◽  
M. Crippa ◽  
D. Guizzardi ◽  
F. Dentener ◽  
M. Muntean ◽  
...  

Abstract. The mandate of the Task Force Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions data set has been constructed using regional emission grid maps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories – including that of the Environmental Protection Agency (EPA) for USA, the EPA and Environment Canada (for Canada), the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO) for Europe, and the Model Inter-comparison Study for Asia (MICS-Asia III) for China, India and other Asian countries – was gap-filled with the emission grid maps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific grid maps for each substance and year. The HTAP_v2.2 air pollutant grid maps are considered to combine latest available regional information within a complete global data set. The disaggregation by sectors, high spatial and temporal resolution and detailed information on the data sources and references used will provide the user the required transparency. Because HTAP_v2.2 contains primarily official and/or widely used regional emission grid maps, it can be recommended as a global baseline emission inventory, which is regionally accepted as a reference and from which different scenarios assessing emission reduction policies at a global scale could start. An analysis of country-specific implied emission factors shows a large difference between industrialised countries and developing countries for acidifying gaseous air pollutant emissions (SO2 and NOx) from the energy and industry sectors. This is not observed for the particulate matter emissions (PM10, PM2.5), which show large differences between countries in the residential sector instead. The per capita emissions of all world countries, classified from low to high income, reveal an increase in level and in variation for gaseous acidifying pollutants, but not for aerosols. For aerosols, an opposite trend is apparent with higher per capita emissions of particulate matter for low income countries.


2021 ◽  
Author(s):  
Jiawen Liu ◽  
Lara P. Clark ◽  
Matthew Bechle ◽  
Anjum Hajat ◽  
Sun-Young Kim ◽  
...  

All data used are publicly available. Demographic data are available via IPUMS National Historic Geographic Information Systems [<a href="http://www.nhgis.org/" target="_blank">www.nhgis.org</a>]; air pollution estimates are available via the EPA CACES project [<a href="http://www.caces.us/" target="_blank">www.caces.us</a>]).


Author(s):  
Xinlin Ma ◽  
Xijing Li ◽  
Mei-Po Kwan ◽  
Yanwei Chai

It has been widely acknowledged that air pollution has a considerable adverse impact on people’s health. Disadvantaged groups such as low-income people are often found to experience greater negative effects of environmental pollution. Thus, improving the accuracy of air pollution exposure assessment might be essential to policy-making. Recently, the neighborhood effect averaging problem (NEAP) has been identified as a specific form of possible bias when assessing individual exposure to air pollution and its health impacts. In this paper, we assessed the real-time air pollution exposure and residential-based exposure of 106 participants in a high-pollution community in Beijing, China. The study found that: (1) there are significant differences between the two assessments; (2) most participants experienced the NEAP and could lower their exposure by their daily mobility; (3) three vulnerable groups with low daily mobility and could not avoid the high pollution in their residential neighborhoods were identified as exceptions to this: low-income people who have low levels of daily mobility and limited travel outside their residential neighborhoods, blue-collar workers who spend long hours at low-end workplaces, and elderly people who face many household constraints. Public policies thus need to focus on the hidden environmental injustice revealed by the NEAP in order to improve the well-being of these environmentally vulnerable groups.


2018 ◽  
Vol 4 ◽  
pp. 237802311880704
Author(s):  
Jessica L. Eckhardt

Obesogenic theories suggests that obesity risk can be influenced by exposure to toxic chemicals present in built and natural environments. Although physical scientists have been on the forefront of obesogenic research, social science perspectives have been absent in understanding the relationship between environmental pollution and obesity risk. To address such gaps, the author uses a sociological perspective to explore the way in which exposure to a specific class of obesogens, endocrine disruptors, influences adult obesity prevalence. Using air pollution emissions data from the National Air Toxics Assessment and health data from the Behavioral Risk Factor Screening Survey, the author assesses the association between emission exposure and obesity risk across metropolitan areas in the United States. Although the nonsignificant findings do not support obesogenic hypotheses, this research demonstrates the need for obesogenic investigation using large, nationally represented data sets that can be stratified to identify inequalities in pollution exposure and associated obesity risk.


2019 ◽  
Vol 116 (13) ◽  
pp. 6001-6006 ◽  
Author(s):  
Christopher W. Tessum ◽  
Joshua S. Apte ◽  
Andrew L. Goodkind ◽  
Nicholas Z. Muller ◽  
Kimberley A. Mullins ◽  
...  

Fine particulate matter (PM2.5) air pollution exposure is the largest environmental health risk factor in the United States. Here, we link PM2.5exposure to the human activities responsible for PM2.5pollution. We use these results to explore “pollution inequity”: the difference between the environmental health damage caused by a racial–ethnic group and the damage that group experiences. We show that, in the United States, PM2.5exposure is disproportionately caused by consumption of goods and services mainly by the non-Hispanic white majority, but disproportionately inhaled by black and Hispanic minorities. On average, non-Hispanic whites experience a “pollution advantage”: They experience ∼17% less air pollution exposure than is caused by their consumption. Blacks and Hispanics on average bear a “pollution burden” of 56% and 63% excess exposure, respectively, relative to the exposure caused by their consumption. The total disparity is caused as much by how much people consume as by how much pollution they breathe. Differences in the types of goods and services consumed by each group are less important. PM2.5exposures declined ∼50% during 2002–2015 for all three racial–ethnic groups, but pollution inequity has remained high.


Author(s):  
H. Christopher Frey ◽  
Disha Gadre ◽  
Sanjam Singh ◽  
Prashant Kumar

The National Research Council has identified the lack of sufficient microenvironmental air pollution exposure data as a significant barrier to quantification of human exposure to air pollution. Transportation microenvironments, including pedestrian, transit bus, car, and bicycle, can be associated with higher exposure concentrations than many other microenvironments. Data are lacking that provide a systematic basis for comparing exposure concentrations in these transportation modes that account for key sources of variability, such as time of day, season, and types of location along a route such as bus stops and intersections. The objectives of this work are: to quantify and compare particulate matter (PM2.5), CO, and O3 exposure concentrations in selected active and passive transportation microenvironments; and to quantify the effect of season, time of day, and location with respect to variability in transportation mode exposure concentrations. Measurements were made with an instrumented backpack and were repeated for multiple days in each season to account for the effect of inter-run variability. Results include mean trends, spatial variability, and contribution to variance. Pedestrian and cycle mode exposure concentrations were approximately similar to each other and were substantially higher than for bus and car cabins for both PM2.5 and O3. Based on over 30 days of field measurements conducted over three seasons and for two times of day on weekdays, transportation mode and season were the largest contributors to variability in exposure for PM2.5 and O3, whereas location type alone and in combination with transport mode helped explain variability in CO exposures.


Sign in / Sign up

Export Citation Format

Share Document