scholarly journals HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution

2015 ◽  
Vol 15 (19) ◽  
pp. 11411-11432 ◽  
Author(s):  
G. Janssens-Maenhout ◽  
M. Crippa ◽  
D. Guizzardi ◽  
F. Dentener ◽  
M. Muntean ◽  
...  

Abstract. The mandate of the Task Force Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions data set has been constructed using regional emission grid maps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories – including that of the Environmental Protection Agency (EPA) for USA, the EPA and Environment Canada (for Canada), the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO) for Europe, and the Model Inter-comparison Study for Asia (MICS-Asia III) for China, India and other Asian countries – was gap-filled with the emission grid maps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific grid maps for each substance and year. The HTAP_v2.2 air pollutant grid maps are considered to combine latest available regional information within a complete global data set. The disaggregation by sectors, high spatial and temporal resolution and detailed information on the data sources and references used will provide the user the required transparency. Because HTAP_v2.2 contains primarily official and/or widely used regional emission grid maps, it can be recommended as a global baseline emission inventory, which is regionally accepted as a reference and from which different scenarios assessing emission reduction policies at a global scale could start. An analysis of country-specific implied emission factors shows a large difference between industrialised countries and developing countries for acidifying gaseous air pollutant emissions (SO2 and NOx) from the energy and industry sectors. This is not observed for the particulate matter emissions (PM10, PM2.5), which show large differences between countries in the residential sector instead. The per capita emissions of all world countries, classified from low to high income, reveal an increase in level and in variation for gaseous acidifying pollutants, but not for aerosols. For aerosols, an opposite trend is apparent with higher per capita emissions of particulate matter for low income countries.

2015 ◽  
Vol 15 (8) ◽  
pp. 12867-12909 ◽  
Author(s):  
G. Janssens-Maenhout ◽  
M. Crippa ◽  
D. Guizzardi ◽  
F. Dentener ◽  
M. Muntean ◽  
...  

Abstract. The mandate of the Task Force Hemispheric Transport of Air Pollution (HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions dataset has been constructed using regional emission gridmaps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories, including the Environmental Protection Agency (EPA)'s for USA, EPA and Environment Canada's for Canada, the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO)'s for Europe, and the Model Inter-comparison Study in Asia (MICS-Asia)'s for China, India and other Asian countries, was gap-filled with the emission gridmaps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South-America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude–latitude, to yield monthly, global, sector-specific gridmaps for each substance and year. The HTAP_v2.2 air pollutant gridmaps are considered to combine latest available regional information within a complete global dataset. The disaggregation by sectors, high spatial and temporal resolution and detailed information on the data sources and references used will provide the user the required transparency. Because HTAP_v2.2 contains primarily official and/or widely used regional emission gridmaps, it can be recommended as a global baseline emission inventory, which is regionally accepted as a reference and from which different scenarios assessing emission reduction policies at a global scale could start. An analysis of country-specific implied emission factors shows a large difference between industrialised countries and developing countries for all air pollutant emissions from the energy and industry sectors, but not from the residential one. A comparison of the population weighted emissions for all world countries, grouped into four classes of similar income, reveals that the per capita emissions are, with increasing income group of countries, increasing in level but also in variation for all air pollutants but not for aerosols.


2017 ◽  
Vol 10 (9) ◽  
pp. 3255-3276 ◽  
Author(s):  
Augustin Colette ◽  
Camilla Andersson ◽  
Astrid Manders ◽  
Kathleen Mar ◽  
Mihaela Mircea ◽  
...  

Abstract. The EURODELTA-Trends multi-model chemistry-transport experiment has been designed to facilitate a better understanding of the evolution of air pollution and its drivers for the period 1990–2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional-scale air quality. The present paper formulates the main scientific questions and policy issues being addressed by the EURODELTA-Trends modelling experiment with an emphasis on how the design and technical features of the modelling experiment answer these questions. The experiment is designed in three tiers, with increasing degrees of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000, and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions, and (iii) meteorology complements it. The most demanding tier consists of two complete time series from 1990 to 2010, simulated using either time-varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and five models have – to date – completed the full set of simulations (and 21-year trend calculations have been performed by four models). The modelling results are publicly available for further use by the scientific community. The main expected outcomes are (i) an evaluation of the models' performances for the three reference years, (ii) an evaluation of the skill of the models in capturing observed air pollution trends for the 1990–2010 time period, (iii) attribution analyses of the respective role of driving factors (e.g. emissions, boundary conditions, meteorology), (iv) a dataset based on a multi-model approach, to provide more robust model results for use in impact studies related to human health, ecosystem, and radiative forcing.


2020 ◽  
Vol 117 (32) ◽  
pp. 18984-18990 ◽  
Author(s):  
Zander S. Venter ◽  
Kristin Aunan ◽  
Sourangsu Chowdhury ◽  
Jos Lelieveld

The lockdown response to coronavirus disease 2019 (COVID-19) has caused an unprecedented reduction in global economic and transport activity. We test the hypothesis that this has reduced tropospheric and ground-level air pollution concentrations, using satellite data and a network of >10,000 air quality stations. After accounting for the effects of meteorological variability, we find declines in the population-weighted concentration of ground-level nitrogen dioxide (NO2: 60% with 95% CI 48 to 72%), and fine particulate matter (PM2.5: 31%; 95% CI: 17 to 45%), with marginal increases in ozone (O3: 4%; 95% CI: −2 to 10%) in 34 countries during lockdown dates up until 15 May. Except for ozone, satellite measurements of the troposphere indicate much smaller reductions, highlighting the spatial variability of pollutant anomalies attributable to complex NOxchemistry and long-distance transport of fine particulate matter with a diameter less than 2.5 µm (PM2.5). By leveraging Google and Apple mobility data, we find empirical evidence for a link between global vehicle transportation declines and the reduction of ambient NO2exposure. While the state of global lockdown is not sustainable, these findings allude to the potential for mitigating public health risk by reducing “business as usual” air pollutant emissions from economic activities. Explore trends here:https://nina.earthengine.app/view/lockdown-pollution.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 739
Author(s):  
Bin Xu ◽  
Xiangyu You ◽  
Yaoyu Zhou ◽  
Chunhao Dai ◽  
Zhan Liu ◽  
...  

As one of China’s emerging urban agglomerations, the Changzhutan urban area is suffering from regional composite air pollution. Previous studies mainly focus on single cities or world-class urban agglomerations, which cannot provide a scientific basis for air pollution in emerging urban agglomerations. This paper proposes the latest high-resolution emission inventory through the emission factor method and compares the results with the rest of the urban agglomeration. The emission inventory shows that the estimates for sulfur dioxide (SO2), nitrogen oxides (NOX), particulate matter 10 (PM10), particulate matter 2.5 (PM2.5), volatile organic compounds (VOCs), and ammonia (NH3) emission are 132.5, 148.9, 111.6, 56.5, 119.0, and 72.0 kt, respectively. From the 3 × 3 km emission grid, the spatial difference of air pollutant emissions in the Changzhutan urban agglomeration was more obvious, but the overall trend of monthly pollutant discharge was relatively stable. Depending on the source apportionment, SO42−, OC, and NO3− are the main chemical constituents of PM2.5, accounting for 13.06, 8.24, and 4.84 μg/m3, respectively. Simultaneously, industrial emissions, vehicle exhaust, and dust are still three main sources that cannot be ignored. With the support of these data, the results of this study may provide a reference for other emerging urban agglomerations in air quality.


Author(s):  
William Mueller ◽  
Kraichat Tantrakarnapa ◽  
Helinor Jane Johnston ◽  
Miranda Loh ◽  
Susanne Steinle ◽  
...  

Abstract Background There is a growing evidence that exposure to ambient particulate air pollution during pregnancy is associated with adverse birth outcomes, including reduced birth weight (BW). The objective of this study was to quantify associations between BW and exposure to particulate matter (PM) and biomass burning during pregnancy in Thailand. Methods We collected hourly ambient air pollutant data from ground-based monitors (PM with diameter of <10 µm [PM10], Ozone [O3], and nitrogen dioxide [NO2]), biomass burning from satellite remote sensing data, and individual birth weight data during 2015–2018. We performed a semi-ecological analysis to evaluate the association between mean trimester exposure to air pollutants and biomass burning with BW and low-birth weight (LBW) (<2500 g), adjusting for gestation age, sex, previous pregnancies, mother’s age, heat index, season, year, gaseous pollutant concentrations, and province. We examined potential effect modification of PM10 and biomass burning exposures by sex. Results There were 83,931 eligible births with a mean pregnancy PM10 exposure of 39.7 µg/m3 (standard deviation [SD] = 7.7). The entire pregnancy exposure was associated with reduced BW both for PM10 (−6.81 g per 10 µg/m3 increase in PM10 [95% CI = −12.52 to −1.10]) and biomass burning (−6.34 g per 1 SD increase in fires/km2 [95% CI = −11.35 to −1.34]) only after adjustment for NO2. In contrast with these findings, a reduced odds ratio (OR) of LBW was associated with PM10 exposure only in trimesters one and two, with no relationship across the entire pregnancy period. Associations with biomass burning were limited to increased ORs of LBW with exposure in trimester three, but only for male births. Conclusion Based on our results, we encourage further investigation of air pollution, biomass burning and BW in Thailand and other low-income and middle-income countries.


2013 ◽  
Vol 13 (15) ◽  
pp. 7451-7471 ◽  
Author(s):  
A. Colette ◽  
B. Bessagnet ◽  
R. Vautard ◽  
S. Szopa ◽  
S. Rao ◽  
...  

Abstract. To quantify changes in air pollution over Europe at the 2050 horizon, we designed a comprehensive modelling system that captures the external factors considered to be most relevant, and that relies on up-to-date and consistent sets of air pollution and climate policy scenarios. Global and regional climate as well as global chemistry simulations are based on the recent representative concentration pathways (RCP) produced for the Fifth Assessment Report (AR5) of the IPCC (Intergovernmental Panel on Climate Change) whereas regional air quality modelling is based on the updated emissions scenarios produced in the framework of the Global Energy Assessment. We explored two diverse scenarios: a reference scenario where climate policies are absent and a mitigation scenario which limits global temperature rise to within 2 °C by the end of this century. This first assessment of projected air quality and climate at the regional scale based on CMIP5 (5th Coupled Model Intercomparison Project) climate simulations is in line with the existing literature using CMIP3. The discrepancy between air quality simulations obtained with a climate model or with meteorological reanalyses is pointed out. Sensitivity simulations show that the main factor driving future air quality projections is air pollutant emissions, rather than climate change or intercontinental transport of pollution. Whereas the well documented "climate penalty" that weights upon ozone (increase of ozone pollution with global warming) over Europe is confirmed, other features appear less robust compared to the literature, such as the impact of climate on PM2.5. The quantitative disentangling of external factors shows that, while several published studies focused on the climate penalty bearing upon ozone, the contribution of the global ozone burden is somewhat overlooked in the literature.


2017 ◽  
Author(s):  
Augustin Colette ◽  
Camilla Andersson ◽  
Astrid Manders ◽  
Kathleen Mar ◽  
Mihaela Mircea ◽  
...  

Abstract. The Eurodelta-Trends multi-model chemistry-transport experiment has been designed to facilitate a better understanding of the evolution of air pollution and its drivers for the period 1990–2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional scale air quality. The present paper formulates the main scientific questions and policy issues being addressed by the Eurodelta-Trends modelling experiment with an emphasis on how the design and technical features of the modelling experiment answer these questions. The experiment is designed in three tiers with increasing degree of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000 and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions and (iii) meteorology complements it. The most demanding tier consists two complete time series from 1990 to 2010, simulated using either time varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and three models have – to date – completed the full set of simulations (and 21-year trend calculations have been performed by four models). The modelling results are publicly available for further use by the scientific community. The main expected outcomes are (i) an evaluation of the models performances for the three reference years, (ii) an evaluation of the skill of the models in capturing observed air pollution trends for the 1990–2010 time period, (iii) attribution analyses of the respective role of driving factors (emissions/boundary conditions/meteorology), (iv) a dataset based on a multi-model approach, to provide more robust model results for use in impact studies related to human health, ecosystem and radiative forcing.


2013 ◽  
Vol 13 (3) ◽  
pp. 6455-6499 ◽  
Author(s):  
A. Colette ◽  
B. Bessagnet ◽  
R. Vautard ◽  
S. Szopa ◽  
S. Rao ◽  
...  

Abstract. To quantify changes in air pollution in Europe at the 2050 horizon, we designed a comprehensive modelling system that captures the external factors considered to be most relevant and relies on up-to-date and consistent sets of air pollution and climate policy scenarios. Global and regional climate as well as global chemistry simulations are based on the recent Representative Concentrations Pathways (RCP) produced for the Fifth Assessment Report (AR5) of IPCC whereas regional air quality modelling is based on the updated emissions scenarios produced in the framework of the Global Energy Assessment. We explored two diverse scenarios: a reference scenario where climate policies are absent and a mitigation scenario which limits global temperature rise to within 2 °C by the end of this century. This first assessment of projected air quality and climate at the regional scale based on CMIP5 (5th Climate Model Intercomparison Project) climate simulations is in line with the existing literature using CMIP3. The discrepancy between air quality simulations obtained with a climate model or with meteorological reanalyses is pointed out. Sensitivity simulations show that the main factor driving future air quality projections is air pollutant emissions, rather than climate change or long range transport. Whereas the well documented "climate penalty" bearing upon ozone over Europe is confirmed, other features appear less robust compared to the literature: such as the impact of climate on PM2.5. The quantitative disentangling of each contributing factor shows that the magnitude of the ozone climate penalty has been overstated in the past while on the contrary the contribution of the global ozone burden is overlooked in the literature.


2014 ◽  
Vol 14 (18) ◽  
pp. 25617-25650 ◽  
Author(s):  
H. Y. Zhao ◽  
Q. Zhang ◽  
S. J. Davis ◽  
D. Guan ◽  
Z. Liu ◽  
...  

Abstract. High anthropogenic emissions from China have resulted in serious air pollution, and it has attracted considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated, however, understanding the mechanisms how the pollutants were transferred through economic and trade activities remains challenge. In this work, we assessed China's virtual air pollutant transport embodied in trade, by using consumption-based accounting approach. We first constructed a consumption-based emission inventory for China's four key air pollutants (primary PM2.5, sulfur dioxide (SO2), nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOC)) in 2007, based on the bottom-up sectoral emission inventory concerning their production activities – a production-based inventory. We used a multiregional input-output (MRIO) model to integrate the sectoral production-based emissions and the associated economic and trade activities, and finally obtained consumption-based inventory. Unlike the production-based inventory, the consumption-based inventory tracked emissions throughout the supply chain related to the consumption of goods and services and hereby identified the emission flows followed the supply chains. From consumption-based perspective, emissions were significantly redistributed among provinces due to interprovincial trade. Large amount of emissions were embodied in the net imports of east regions from northern and central regions; these were determined by differences in the regional economic status and environmental policies. We also calculated the emissions embodied in exported and imported goods and services. It is found that 15–23% of China's pollutant emissions were related to exports for foreign consumption; that proportion was much higher for central and export-oriented coastal regions. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers and producers in national agreements to encourage efficiency improvement in the supply chain and optimizing consumption structure internationally. The consumption-based air pollutants emission inventory developed in this work can be further used to attribute pollution to different economic activities and final demand types with the aid of air quality models.


Sign in / Sign up

Export Citation Format

Share Document