scholarly journals The Accuracy of Digital Face Scans Obtained from 3D Scanners: An In Vitro Study

Author(s):  
Pokpong Amornvit ◽  
Sasiwimol Sanohkan

Face scanners promise wide applications in medicine and dentistry, including facial recognition, capturing facial emotions, facial cosmetic planning and surgery, and maxillofacial rehabilitation. Higher accuracy improves the quality of the data recorded from the face scanner, which ultimately, will improve the outcome. Although there are various face scanners available on the market, there is no evidence of a suitable face scanner for practical applications. The aim of this in vitro study was to analyze the face scans obtained from four scanners; EinScan Pro (EP), EinScan Pro 2X Plus (EP+) (Shining 3D Tech. Co., Ltd. Hangzhou, China), iPhone X (IPX) (Apple Store, Cupertino, CA, USA), and Planmeca ProMax 3D Mid (PM) (Planmeca USA, Inc. IL, USA), and to compare scans obtained from various scanners with the control (measured from Vernier caliper). This should help to identify the appropriate scanner for face scanning. A master face model was created and printed from polylactic acid using the resolution of 200 microns on x, y, and z axes and designed in Rhinoceros 3D modeling software (Rhino, Robert McNeel and Associates for Windows, Washington DC, USA). The face models were 3D scanned with four scanners, five times, according to the manufacturer’s recommendations; EinScan Pro (Shining 3D Tech. Co., Ltd. Hangzhou, China), EinScan Pro 2X Plus (Shining 3D Tech. Co., Ltd. Hangzhou, China) using Shining Software, iPhone X (Apple Store, Cupertino, CA, USA) using Bellus3D Face Application (Bellus3D, version 1.6.2, Bellus3D, Inc. Campbell, CA, USA), and Planmeca ProMax 3D Mid (PM) (Planmeca USA, Inc. IL, USA). Scan data files were saved as stereolithography (STL) files for the measurements. From the STL files, digital face models are created in the computer using Rhinoceros 3D modeling software (Rhino, Robert McNeel and Associates for Windows, Washington DC, USA). Various measurements were measured five times from the reference points in three axes (x, y, and z) using a digital Vernier caliper (VC) (Mitutoyo 150 mm Digital Caliper, Mitutoyo Co., Kanagawa, Japan), and the mean was calculated, which was used as the control. Measurements were measured on the digital face models of EP, EP+, IPX, and PM using Rhinoceros 3D modeling software (Rhino, Robert McNeel and Associates for Windows, Washington DC, USA). The descriptive statistics were done from SPSS version 20 (IBM Company, Chicago, USA). One-way ANOVA with post hoc using Scheffe was done to analyze the differences between the control and the scans (EP, EP+, IPX, and PM). The significance level was set at p = 0.05. EP+ showed the highest accuracy. EP showed medium accuracy and some lesser accuracy (accurate until 10 mm of length), but IPX and PM showed the least accuracy. EP+ showed accuracy in measuring the 2 mm of depth (diameter 6 mm). All other scanners (EP, IPX, and PM) showed less accuracy in measuring depth. Finally, the accuracy of an optical scan is dependent on the technology used by each scanner. It is recommended to use EP+ for face scanning.

2018 ◽  
Vol 11 (2) ◽  
pp. 751-757 ◽  
Author(s):  
Zahraa Abdulaali Jlekh ◽  
Zainab M. Abdul-Ameer

This in vitro study aimed to assess and compare premolars cuspal deflection that restored with different bulk fill resin materials types (SonicFillTM2, Beautifil Bulk Fill restorative, and FiltekTM Bulk Fill posterior restorative) to those incrementally restored group with conventional composite restorations (low shrinkage universal Tetric Evoceram). A total of 40 intact human maxillary first premolars were prepared into large MOD. Then teeth were randomly classified into four groups (n=10 for each group) according to restorative materials as following: Group A: Teeth were restored with Sonic FillTM2 composite, Group B: restored with Beautifil Bulk Fill restorative material, Group C: Teeth were restored with Filtek BulkTM Fill posterior restorative, and Group D: Teeth were restored with Universal Tetric Evo Ceram®. Digital microscope was used to measure intercuspal distance between two index reference points on the tips of the cusps before preparation, after preparation, and 15minutes after completion of restorations. The differences registered as cuspal deflection. All teeth were exposed to inward cuspal deflection after restoration and all groups that restored with bulk fill restoration reported lower cuspal deflection in compared to group D that restored with conventional composite in layering technique. Beautifil Bulk Fill restorative produced significantly greater cuspal deflection than other bulk fill groups. The study concluded that the use of new bulk fill restorative materials might reduce amount of cuspal deflection significantly. However, type of bulk fill restorative materials also influenced on amount of cuspal deflection so restoration with Sonic Fill™2 composite and Filtek Bulk™ Fill posterior reported lower cuspal deflection than Beautifil Bulk Fill restorative material.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Pokpong Amornvit ◽  
Sasiwimol Sanohkan ◽  
Chaimongkon Peampring

There are various scanners available in dental practice with various accuracies. The aim of this study was to compare the 3D capturing accuracy of scans obtained from Trios 3 and Dental Wings scanner. A reference mandibular model was printed from FormLab with reference points in three axes (X, Y, and XY and Z). The printed model was scanned 5 times with 3 scans: normal scan by Trios 3 (Trios 3A), high-resolution scan by Trios 3 (Trios 3B), and normal scan by Dental Wings. After scan, the stereolithography (stl) files were generated. Then, the measurements were made from the computer software using Rhinoceros 3D (Rhino, Robert McNeel & Associates for Windows, Washington DC, USA). The measurements made with digital caliper were taken as control. Statistical analysis was done using one-way ANOVA with post hoc using Sheffe (P<0.01). Trios 3 presented higher accuracy than Dental Wings and high resolution showed better results. The Dental Wings showed less accuracy at the measurements >50 mm of length and >30 mm in width. There was no significant difference (P>0.05) of control with the Trios 3A and Trios 3B. Similarly, for the measurements in Z-axis, there was no significant difference of control with each scan (Trios 3A, Trios 3B, and Dental Wings). Accuracy of the scan is affected by the length of the scanning area and scanning pattern. It is less recommended to Dental Wings scan >3-unit prosthesis and that crosses the midline.


2017 ◽  
Vol 65 (1) ◽  
pp. 25-29
Author(s):  
Rafael Pino VITTI ◽  
Victor Pinheiro FEITOSA ◽  
Ataís BACCHI ◽  
William Cunha BRANDT ◽  
Milton Edson MIRANDA ◽  
...  

ABSTRACT Objective: The purpose of this in vitro study was to assess and compare the dimensional accuracy of three impression techniques: 1-step putty/light-body, 2-step putty/light-body, and the monophase technique. Methods: A partially edentulous standard stainless steel mandibular arch cast with reference points on the teeth was used to make the impressions. The anteroposterior and transverse distances were measured. All impressions were made with a polyvinyl siloxane using stock metallic (1- and 2-step putty/light-body techniques) or acrylic resin (monophase technique) trays. The monophase impressions were made using a light-body material and the 1- and 2-step putty/light-body impressions with putty and light-body materials. After impression procedures, the accuracy of each technique was assessed measuring the stone casts (n = 5) poured from the impressions using a microscope at 30x magnification and at 0.5 µm accuracy. The data were analyzed statistically using 2-way ANOVA and Tukey's test (p<0.05). Results: Stone casts made by all techniques had significantly negative linear changes (shrinkage). The anteroposterior distances showed more dimensional changes than the transverse distances. The edentulous side showed more shrinkage than the anteroposterior side. Conclusion: No differences between the impression techniques were found, but significant dimensional changes were observed.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

Sign in / Sign up

Export Citation Format

Share Document