scholarly journals Bisphenol A and Type 2 Diabetes Mellitus: A Review of Epidemiologic, Functional, and Early Life Factors

Author(s):  
Francesca Farrugia ◽  
Alexia Aquilina ◽  
Josanne Vassallo ◽  
Nikolai Paul Pace

Type 2 diabetes mellitus (T2DM) is characterised by insulin resistance and eventual pancreatic β-cell dysfunction, resulting in persistent high blood glucose levels. Endocrine disrupting chemicals (EDCs) such as bisphenol A (BPA) are currently under scrutiny as they are implicated in the development of metabolic diseases, including T2DM. BPA is a pervasive EDC, being the main constituent of polycarbonate plastics. It can enter the human body by ingestion, through the skin, and cross from mother to offspring via the placenta or breast milk. BPA is a xenoestrogen that alters various aspects of beta cell metabolism via the modulation of oestrogen receptor signalling. In vivo and in vitro models reveal that varying concentrations of BPA disrupt glucose homeostasis and pancreatic β-cell function by altering gene expression and mitochondrial morphology. BPA also plays a role in the development of insulin resistance and has been linked to long-term adverse metabolic effects following foetal and perinatal exposure. Several epidemiological studies reveal a significant association between BPA and the development of insulin resistance and impaired glucose homeostasis, although conflicting findings driven by multiple confounding factors have been reported. In this review, the main findings of epidemiological and functional studies are summarised and compared, and their respective strengths and limitations are discussed. Further research is essential for understanding the exact mechanism of BPA action in various tissues and the extent of its effects on humans at environmentally relevant doses.

2015 ◽  
Vol 8 (2) ◽  
pp. 183-189 ◽  
Author(s):  
Hideaki Kaneto ◽  
Taka-aki Matsuoka ◽  
Tomohiko Kimura ◽  
Atsushi Obata ◽  
Masashi Shimoda ◽  
...  

2013 ◽  
Vol 177 (12) ◽  
pp. 1418-1429 ◽  
Author(s):  
Fumiaki Imamura ◽  
Kenneth J. Mukamal ◽  
James B. Meigs ◽  
José A. Luchsinger ◽  
Joachim H. Ix ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
pp. 1770
Author(s):  
Nadia Rachdaoui

Insulin, a hormone produced by pancreatic β-cells, has a primary function of maintaining glucose homeostasis. Deficiencies in β-cell insulin secretion result in the development of type 1 and type 2 diabetes, metabolic disorders characterized by high levels of blood glucose. Type 2 diabetes mellitus (T2DM) is characterized by the presence of peripheral insulin resistance in tissues such as skeletal muscle, adipose tissue and liver and develops when β-cells fail to compensate for the peripheral insulin resistance. Insulin resistance triggers a rise in insulin demand and leads to β-cell compensation by increasing both β-cell mass and insulin secretion and leads to the development of hyperinsulinemia. In a vicious cycle, hyperinsulinemia exacerbates the metabolic dysregulations that lead to β-cell failure and the development of T2DM. Insulin and IGF-1 signaling pathways play critical roles in maintaining the differentiated phenotype of β-cells. The autocrine actions of secreted insulin on β-cells is still controversial; work by us and others has shown positive and negative actions by insulin on β-cells. We discuss findings that support the concept of an autocrine action of secreted insulin on β-cells. The hypothesis of whether, during the development of T2DM, secreted insulin initially acts as a friend and contributes to β-cell compensation and then, at a later stage, becomes a foe and contributes to β-cell decompensation will be discussed.


2016 ◽  
Vol 4 (1) ◽  
pp. e000237 ◽  
Author(s):  
Ditte Smed Iversen ◽  
Julie Støy ◽  
Ulla Kampmann ◽  
Thomas Schmidt Voss ◽  
Lene Ring Madsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document