scholarly journals An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality

Author(s):  
Steffen Mueller ◽  
Gail Dennison ◽  
Shujun Liu

Although cancer is traditionally considered a genetic disease, the epigenetic abnormalities, including DNA hypermethylation, histone deacetylation, and/or microRNA dysregulation, have been demonstrated as a hallmark of cancer. Compared with gene mutations, aberrant epigenetic changes occur more frequently, and cellular epigenome is more susceptible to change by environmental factors. Excess cancer risks are positively associated with exposure to occupational and environmental chemical carcinogens, including those from gasoline combustion exhausted in vehicles. Of note, previous studies proposed particulate matter index (PMI) as a measure for gasoline sooting tendency, and showed that, compared with the other molecules in gasoline, 1,2,4–Trimethylbenzene, 2–methylnaphthalene and toluene significantly contribute to PMI of the gasoline blends. Mechanistically, both epigenome and genome are important in carcinogenicity, and the genotoxicity of chemical agents has been thoroughly studied. However, less effort has been put into studying the epigenotoxicity. Moreover, as the blending of ethanol into gasoline substitutes for carcinogens, like benzene, toluene, xylene, butadiene, and polycyclic aromatic hydrocarbons, etc., a reduction of secondary aromatics has been achieved in the atmosphere. This may lead to diminished cancer initiation and progression through altered cellular epigenetic landscape. The present review summarizes the most important findings in the literature on the association between exposures to carcinogens from gasoline combustion, cancer epigenetics and the potential epigenetic impacts of biofuels.

2021 ◽  
Vol 99 (2) ◽  
pp. 44-55
Author(s):  
I.O. Chernychenko ◽  
◽  
N.V. Balenko ◽  
O.M. Lytvychenko ◽  
V.F. Babii ◽  
...  

Objective: We determined the possible effects of priority chemical environmental carcinogens on the incidence of hormone-dependent tumors and the mechanisms of their effect on the basis of the analysis of literature data and our own research. Results: The performed analysis demonstrates the scanity of the research devoted to the study of chemical carcinogens which are concerned only with the class of polycyclic aromatic hydrocarbons (PAH), benzo(a)pyrene (BP), atmospheric pollution, emissions from vehicles, the cadmium heavy metal and products of smoking containing these substances. The connection with PAH (BP) and the development of breast, ovarian cancer, cadmium with the development of breast, endometrial, ovarian cancer in women and prostate cancer in men was established. Epidemiological data, combined with experimental ones, suggest a possible contribution of carcinogens into the increase of the incidence of hormone-dependent tumors. At the same time, mechanisms of action of PAH and cadmium on the development of hormone-dependent tumors are unclear. The accumulated experimental and epidemiological data allow us to conclude that the oncological danger of these carcinogens lies in the combination of genotoxic and hormone-mimetic properties; the main mechanisms, involved in the realization of the effect of BP and cadmium, are associated with changes and disorders at different levels of the structural and functional organization of the organism, including the endocrine system, which can lead to the development of tumors. The urgency of the problem of the incidence of hormone-dependent tumors and the potential role of the studied chemical carcinogens as pollutants of the environment of human functions indicate the need to take these circumstances into account when developing and implementing preventive measures.


Author(s):  
Dina Orazbayeva ◽  
Ulzhalgas Karatayeva ◽  
Kulzhan Beysembayeva ◽  
Kulyash Meyramkulova

Solid-phase microextraction in combination with gas chromatography and mass-spectrometry (GC-MS) was used for determination of benzene, toluene, ethylbenzene and o-xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), and for identification of volatile organic compounds (VOCs) in ambient air of the city of Astana, Kazakhstan. The screening of the samples showed the presence of mono- and polycyclic aromatic hydrocarbons, alkanes, alkenes, phenols, and benzaldehydes. The concentrations of naphthalene were 5-7 times higher than the permissible value, it was detected in all studied air samples. Average concentration of naphthalene was 18.4 μg/m3, acenaphthylene – 0.54 μg/m3, acenaphthene – 1.63 μg/m3, fluorene – 0.79 μg/m3, anthracene – 3.27 μg/m3, phenanthrene – 0.22 μg/m3, fluorantene – 0.74 μg/m3, pyrene – 0.73 μg/m3. Average concentrations of BTEX in the studied samples were 31.1, 84.9, 10.8 and 11.6 μg/m3, respectively. Based on the statistical analysis of the concentrations of BTEX and PAH, the main source of city air pollution with them was assumed to be vehicle emissions.


Risk Analysis ◽  
2018 ◽  
Vol 38 (9) ◽  
pp. 1944-1961 ◽  
Author(s):  
Jeffrey K. Wickliffe ◽  
Bridget Simon-Friedt ◽  
Jessi L. Howard ◽  
Ericka Frahm ◽  
Buffy Meyer ◽  
...  

Author(s):  
E. A. Burov ◽  
◽  
L.V. Ivanova ◽  
V. N. Koshelev ◽  
D. A. Sandzhieva ◽  
...  

The paper reviews the structural and group composition of three basic winter diesel fuels and its influence on the low-temperature and lubricating properties of fuels. It is shown that a high content of saturated hydrocarbons, primarily medium-molecular n-alkanes, and arenes with a higher proportion of substitution leads to a deterioration of low-temperature properties. A decrease in the proportion of medium-molecular alkanes and even a slight increase in the content of bi - and polycyclic aromatic hydrocarbons impairs the lubricating properties of the fuel.The influence of the component composition of diesel fuels on the effectiveness of anti-wear and depressor-dispersing additives was noted. The study of compatibility of additives of different functional actions revealed that the anti-wear additive based on fatty acids of tallow oil does not affect the activity of the depressant-dispersing additive, while the combined use of these additives slightly worsens the lubricating properties, but does not lead this indicator beyond the established standards.


Digestion ◽  
2020 ◽  
pp. 1-8
Author(s):  
Genki Usui ◽  
Keisuke Matsusaka ◽  
Yasunobu Mano ◽  
Masayuki Urabe ◽  
Sayaka Funata ◽  
...  

<b><i>Background:</i></b> Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. GC is a pathologically and molecularly heterogeneous disease. DNA hypermethylation in promoter CpG islands causes silencing of tumor-suppressor genes and thus contributes to gastric carcinogenesis. In addition, various molecular aberrations, including aberrant chromatin structures, gene mutations, structural variants, and somatic copy number alterations, are involved in gastric carcinogenesis. <b><i>Summary:</i></b> Comprehensive DNA methylation analyses revealed multiple DNA methylation patterns in GCs and classified GC into distinct molecular subgroups: extremely high-methylation epigenotype uniquely observed in GC associated with Epstein-Barr virus (EBV), high-methylation epigenotype associated with microsatellite instability (MSI), and low-methylation epigenotype. In The Cancer Genome Atlas classification, EBV and MSI are extracted as independent subgroups of GC, whereas the remaining GCs are categorized into genomically stable (GS) and chromosomal instability (CIN) subgroups. EBV-positive GC, exhibiting the most extreme DNA hypermethylation in the whole human malignancies, frequently shows <i>CDKN2A</i> silencing, <i>PIK3CA</i> mutations, <i>PD-L1/2</i> overexpression, and lack of <i>TP53</i> mutations. MSI, exhibiting high DNA methylation, often has <i>MLH1</i> silencing and abundant gene mutations. GS is generally a diffuse-type GC and frequently shows <i>CDH1/RHOA</i> mutations or <i>CLDN18–ARHGAP</i> fusion. CIN is generally an intestinal-type GC and frequently has <i>TP53</i> mutations and genomic amplification of receptor tyrosine kinases. <b><i>Key Messages:</i></b> The frequency and targets of genetic aberrations vary depending on the epigenotype. Aberrations in the genome and epigenome are expected to synergistically interact and contribute to gastric carcinogenesis and comprehensive analyses of those in GCs may help elucidate the mechanism of carcinogenesis.


2016 ◽  
Vol 61 (4) ◽  
pp. 2171-2176 ◽  
Author(s):  
M. Holtzer ◽  
R. Dańko ◽  
S. Żymankowska-Kumon ◽  
M. Kubecki ◽  
A. Bobrowski

Abstract Out of moulding sands used in the foundry industry, sands with organic binders deserve a special attention. These binders are based on synthetic resins, which ensure obtaining the proper technological properties and sound castings, however, they negatively influence the environment. These resins in their initial state these resins are not very dangerous for people and for the environment, thus under an influence of high temperatures they generate very harmful products, being the result of their thermal decomposition. Depending on the kind of the applied resin, under an influence of a temperature such compounds as: furfuryl alcohol, formaldehyde, phenol, BTEX group (benzene, toluene, ethylbenzene, xylene), and also polycyclic aromatic hydrocarbons (PAHs) can be formed and released. The aim of the study was the development of the method, selection of analytical methods and the determination of optimal conditions of formation compounds from the BTEX and PAHs group. Investigations were carried out in the specially designed set up for the thermal decomposition of organic substances in a temperature range: 500 – 1 300°C at the laboratory scale. The object for testing was alkyd resin applied as a binding material for moulding sands. The qualitative and quantitative analyses of compounds were performed by means of the gas chromatography coupled with the mass spectrometry (GC/MS).


1977 ◽  
Vol 1977 (1) ◽  
pp. 611-616 ◽  
Author(s):  
Richard F. Lee

ABSTRACT Radiolabeled hydrocarbons and phenols were added to water samples from the Skidaway and Cooper Rivers, two estuarine rivers on the U.S. south Atlantic coast. The adsorption of hydrocarbons to particles and microbial degradation of different petroleum components were the processes studied. Alkanes, low molecular weight aromatics (benzene, toluene, naphthalene and methylnaphthalene) and phenols were rapidly degraded to 14CO2. Low degradation rates were observed for the higher weight polycyclic aromatic hydrocarbons, fluorene, anthracene, benz(a)anthracene, and benz(a)pyrene, and from 12 to 70% of these hydrocarbons were absorbed to suspended particles in the water. Radioauto graphs of particles after the addition of 3H-benz(a)pyrene and 3H-hexadecane to the water samples indicated the hydrocarbons associated with detrital particles. This detritus was composed of a mixture of clay, organic matter, plankton remains and living microbes. One area of the Cooper River had visible oil slicks and the degradation rates of added heptadecane (20 μg/l), naphthalene (30 μg/l) and methylnaphthalene (30 μg/l) were 0.4, 2.8 and 1.1 μg/I/day, respectively. In contrast, at a downstream site, where there were no visible slicks, the degradation rate of these same hydrocarbons were 0.1, 0.7 and 0.1 μg/l/day, respectively. Estuarine water had much higher hydrocarbon degradation rates than offshore and Gulf Stream waters.


Sign in / Sign up

Export Citation Format

Share Document