Estimation of Efficiency of Functional Additives in Winter Diesel Fuels of Different Hydrocarbon-Type Content

Author(s):  
E. A. Burov ◽  
◽  
L.V. Ivanova ◽  
V. N. Koshelev ◽  
D. A. Sandzhieva ◽  
...  

The paper reviews the structural and group composition of three basic winter diesel fuels and its influence on the low-temperature and lubricating properties of fuels. It is shown that a high content of saturated hydrocarbons, primarily medium-molecular n-alkanes, and arenes with a higher proportion of substitution leads to a deterioration of low-temperature properties. A decrease in the proportion of medium-molecular alkanes and even a slight increase in the content of bi - and polycyclic aromatic hydrocarbons impairs the lubricating properties of the fuel.The influence of the component composition of diesel fuels on the effectiveness of anti-wear and depressor-dispersing additives was noted. The study of compatibility of additives of different functional actions revealed that the anti-wear additive based on fatty acids of tallow oil does not affect the activity of the depressant-dispersing additive, while the combined use of these additives slightly worsens the lubricating properties, but does not lead this indicator beyond the established standards.

Author(s):  
A. Trotsenko ◽  
A. Grigorov ◽  
V. Nazarov

It is known that one of the ways to increase the level of operational properties of diesel fuels is the injection of special components – additives – into their composition. Today this way is a quite rational and economically feasible for Ukraine, especially in the absence of high-quality oil raw materials for the production of fuels, which in turn leads to a significant dependence on imports. The range of additives used in diesel fuels is very diverse, which makes it difficult to select a balanced package, especially considering their effectiveness and compatibility with each other. This procedure can be a bit simplified by adding poly-functional additives to diesel fuel, the use of which is devoted to a lot of periodical literature. Based on the relevance of the direction of scientific research related to improving the properties of diesel fuel, which is produced at the enterprises of the oil refining industry in Ukraine, we proposed to use a substance belonging to the class of aromatic diazocompounds and having polyfunctional properties in the composition of diesel fuels. Thus, this additive was added to a straight-run diesel fraction (240–350 °C) in an amount of up to 1.0%, followed by a study of the properties of the resulting mixture. Studies have shown that the additive significantly improves low-temperature properties (by -10 °C), contributes to an increase in fuel density and viscosity, and additionally gives diesel fuel a stable color (from yellow to orange). Consequently, it can be used in the composition of commercial diesel fuels with improved performance properties.


Author(s):  
Zhong-Shan Deng ◽  
Jing Liu

Magnetic nanoparticles with high electrical conductivity have been proved to be effective in enhancing the efficacy of RF ablation. However, the possible carbonization of tissues is an unfavorable factor in achieving greater dimensions of necrosis, because carbonized tissue is a poor conductor, increases impedance and limits propagation area of RF energy. To prevent potential carbonization of tissues surrounding to the heating part of RF electrodes during RF ablation, a new method using ultra-low temperature fluid was proposed for cooling RF electrodes and tissues in the vicinity of RF electrodes in this study. To test its feasibility, the corresponding bioheat transfer process during RF ablation simultaneously applying this cooling method and magnetic nanoparticles was studied through numerical simulations. The results indicate that the cooling method by ultra-low temperature fluid can prevent carbonization of tissues resulted by local high temperature, significantly enlarge the effective heating area and thus actualize highly efficient thermal coagulation to tumor tissues during RF ablation with adjuvant use of magnetic nanoparticles.


2020 ◽  
Vol 17 ◽  
pp. 00156
Author(s):  
Rodion Okunev ◽  
Elena Smirnova ◽  
Kamil Giniyatullin ◽  
Irina Guseva

The evaluation of the possible negative effect of pyrochars on soils based on the analysis of the content of lipid fraction and polycyclic aromatic hydrocarbons (PAHs) of organic matter was evaluated. Eight species of pyrochar were obtained from the crop and wood residues (linden, willow, corn, millet) by two pyrolysis regimes: low-temperature pyrolysis (<400°C) and high-temperature pyrolysis (400–600°C). The largest amount of lipid fraction (from 0.54 to 2.78%) and PAHs were found in pyrochars obtained at a low pyrolysis temperature. The total content of PAHs in the studied samples ranged from 8.49 to 603.21 μg/kg. According to the PAHs content, pyrochar was the most adverse for application to the soil, obtained from the residues of millet of low-temperature pyrolysis, however, at a high pyrolysis temperature, the safest product with the lowest PAHs concentration and a significant amount of lipid fraction was formed. Using an incubation experiment by measuring substrate-induced respiration in soil-pyrochar mixtures, it was shown that the application of this meliorant can also increase the emission of carbon dioxide from soils in a short time. The results of the experiments showed that it is necessary to precisely control the conditions of pyrolysis and carefully select the material for pyrochar in order to obtain the products with most favourable amounts of lipid fraction and PAHs content.


1983 ◽  
Vol 19 (9) ◽  
pp. 429-431
Author(s):  
A. A. Gureev ◽  
A. A. Kukushkin ◽  
A. V. Nazarov ◽  
N. F. Stepanov
Keyword(s):  

1972 ◽  
Vol 8 (11) ◽  
pp. 865-870 ◽  
Author(s):  
B. V. Losikov ◽  
A. A. Kukushkin ◽  
R. M. Plakhova
Keyword(s):  

Author(s):  
Gokul Vishwanathan ◽  
Rolf D. Reitz

A numerical study of in-cylinder soot formation and oxidation processes in n-heptane lifted flames using various soot inception species has been conducted. In a recent study by the authors, it was found that the soot formation and growth regions in lifted flames were not adequately represented by using acetylene alone as the soot inception species. Comparisons with a conceptual model and available experimental data suggested that the location of soot formation regions could be better represented if polycyclic aromatic hydrocarbon (PAH) species were considered as alternatives to acetylene for soot formation processes. Since the local temperatures are much lower under low temperature combustion (LTC) conditions, it is believed that significant soot mass contribution can be attributed to PAH rather than to acetylene. To quantify and validate the above observations, a reduced n-heptane chemistry mechanism has been extended to include PAH species up to four fused aromatic rings (pyrene). The resulting chemistry mechanism was integrated into the multidimensional CFD code KIVA-CHEMKIN for modeling soot formation in lifted flames in a constant volume chamber. The investigation revealed that a simpler model that only considers up to phenanthrene (three fused rings) as the soot inception species has good possibilities for better soot location predictions. The present work highlights and illustrates the various research challenges toward accurate qualitative and quantitative predictions of soot for new low emission combustion strategies for I.C. engines.


Sign in / Sign up

Export Citation Format

Share Document