scholarly journals Effect of Heart Rate Reserve on Prefrontal Cortical Activation While Dual-Task Walking in Older Adults

Author(s):  
Alka Bishnoi ◽  
Gioella N. Chaparro ◽  
Manuel E. Hernandez

Hypertension is considered a risk factor for cardiovascular health and non-amnestic cognitive impairment in older adults. While heart rate reserve (HRR) has been shown to be a risk factor for hypertension, how impaired HRR in older adults can lead to cognitive impairment is still unclear. The objective of this study was to examine the effects of HRR on prefrontal cortical (PFC) activation under varying dual-task demands in older adults. Twenty-eight older adults (50–82 years of age) were included in this study and divided into higher (n = 14) and lower (n = 14) HRR groups. Participants engaged in the cognitive task which was the Modified Stroop Color Word Test (MSCWT) on a self-paced treadmill while walking. Participants with higher HRR demonstrated increased PFC activation in comparison to lower HRR, even after controlling for covariates in analysis. Furthermore, as cognitive task difficulty increased (from neutral to congruent to incongruent to switching), PFC activation increased. In addition, there was a significant interaction between tasks and HRR group, with older adults with higher HRR demonstrating increases in PFC activation, faster gait speed, and increased accuracy, relative to those with lower HRR, when going from neutral to switching tasks. These results provide evidence of a relationship between HRR and prefrontal cortical activation and cognitive and physical performance, suggesting that HRR may serve as a biomarker for cognitive health of an older adult with or without cardiovascular risk.

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S793-S794
Author(s):  
Manuel E Hernandez

Abstract Mobility impairments are prevalent in older adults. Whereas walking had traditionally been viewed as an autonomous process, evidence over the last decade has shown that cognitive processes such as attention and executive function have a significant impact on gait function in older adults. However, the exact neural mechanisms underlying difficulties in the control of mobility in older adults remains an open question. We examine the changes in the executive control of mobility in older adults with mobility impairments using functional near-infrared spectroscopy, as operationalized by performance in the community balance and mobility scale (CB&M). We hypothesized that prefrontal cortical (PFC) activity increases would be higher in older adults with mobility impairments, compared with older adults without mobility impairment, as dual-task walking difficulty increased. Older adults with (n=10, mean±SD age: 77±8 years, 8 females, CB&M= 58±12) and without mobility impairment (n=14, mean±SD age: 63±9 years, 11 females, CB&M= 87±6) were recruited from the local community. Dual-task walking was performed at a comfortable pace, while the difficulty of the concurrent cognitive task was increased using the modified Stroop test. PFC activity was measured using measures of oxygenated hemoglobin across the PFC. Older adults with mobility impairments demonstrated disproportionate increases in PFC activity, in comparison to those without mobility impairments, as the difficulty of the concurrent cognitive task increased (P<.001), even after controlling for age. In conclusion, these data suggest that older adults with mobility impairments may require greater attentional resources than those without mobility impairments when concurrently performing thinking and walking tasks.


Author(s):  
L. Kannan ◽  
T. Bhatt

Purpose: To examine the feasibility and effectiveness of dual task (DT) exergaming to improve volitional balance control in older adults with mild cognitive impairment (MCI). Methods: Ten older adults with MCI were examined at baseline (week-0) and post-training (week-5) on volitional balance control (maximum excursion of center of gravity, MXE [%]) while performing cognitive task (auditory clock test or letter number sequencing task) and on the NIH-motor and cognitive toolboxes. DT exergaming training lasted for 12 sessions which consisted of performing explicit cognitive tasks while playing the Wii-Fit balance games. Results: From pre- to post-training, MXE improved (p<0.05); however, cognitive accuracy (cognitive task) remained the same (p>0.05). Improvement in NIH motor and cognitive toolbox tests was observed post-training (p<0.05). Conclusion: DT exergaming was associated to improvements in balance control under attention-demanding conditions in MCI. Future studies may focus on examining the efficacy of such training.


2017 ◽  
Vol 23 (6) ◽  
pp. 493-501 ◽  
Author(s):  
Rebecca K. MacAulay ◽  
Mark T. Wagner ◽  
Dana Szeles ◽  
Nicholas J. Milano

AbstractObjectives: Longitudinal research indicates that cognitive load dual-task gait assessment is predictive of cognitive decline and thus might provide a sensitive measure to screen for mild cognitive impairment (MCI). However, research among older adults being clinically evaluated for cognitive concerns, a defining feature of MCI, is lacking. The present study investigated the effect of performing a cognitive task on normal walking speed in patients presenting to a memory clinic with cognitive complaints. Methods: Sixty-one patients with a mean age of 68 years underwent comprehensive neuropsychological testing, clinical interview, and gait speed (simple- and dual-task conditions) assessments. Thirty-four of the 61 patients met criteria for MCI. Results: Repeated measure analyses of covariance revealed that greater age and MCI both significantly associated with slower gait speed, ps<.05. Follow-up analysis indicated that the MCI group had significantly slower dual-task gait speed but did not differ in simple-gait speed. Multivariate linear regression across groups found that executive attention performance accounted for 27.4% of the variance in dual-task gait speed beyond relevant demographic and health risk factors. Conclusions: The present study increases the external validity of dual-task gait assessment of MCI. Differences in dual-task gait speed appears to be largely attributable to executive attention processes. These findings have clinical implications as they demonstrate expected patterns of gait-brain behavior relationships in response to a cognitive dual task within a clinically representative population. Cognitive load dual-task gait assessment may provide a cost efficient and sensitive measure to detect older adults at high risk of a dementia disorder. (JINS, 2017, 23, 493–501)


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 287-287
Author(s):  
Deepan Guharajan ◽  
Roee Holtzer

Abstract Aging populations are at increased risk to experience mobility disability, which is associated with falls, frailty, and mortality. Previous studies have not examined the concurrent associations of both positive and negative affect with gait velocity. We examined whether individual differences in positive and negative affect predicted dual-task performance decrements in velocity in a dual-task (DT) paradigm in non-demented older adults. We hypothesize that positive affect would be associated with lower DT costs, and negative affect would be associated with higher DT costs. Participants (N = 403; mean age, = 76.22 (6.55); females = 56%) completed the Positive and Negative Affect Schedule (PANAS) and a DT paradigm that involved three task conditions: Single-Task-Walk (STW), Alpha (cognitive interference requiring participants to recite alternate letters of the alphabet), and Dual-Task-Walk (DTW) requiring participant to perform the two single tasks concurrently. Gait velocity was assessed via an instrumented walkway. As expected, results of a linear mixed effects model (LME) showed a significant decline in gait velocity (cm/s) from STW to DTW (estimate = -11.79; 95%CI = -12.82 to -10.77). LME results further revealed that negative affect was associated with greater decline in gait velocity from STW to DTW (ie., worse DT cost) (estimate = -0.38; 95%CI = -0.73 to -0.03). Positive affect did not, however, predict DT costs in gait velocity (estimate = -0.09; 95%CI = -0.23 to 0.05). These findings suggest that increased negative affect interferes with the allocation of attentional resources to competing task demands inherent in the DT paradigm.


Gerontology ◽  
2018 ◽  
Vol 65 (2) ◽  
pp. 164-173 ◽  
Author(s):  
Frederico Pieruccini-Faria ◽  
Yanina Sarquis-Adamson ◽  
Manuel Montero-Odasso

Background: Older adults with Mild Cognitive Impairment (MCI) are at higher risk of falls and injuries, but the underlying mechanism is poorly understood. Inappropriate anticipatory postural adjustments to overcome balance perturbations are affected by cognitive decline. However, it is unknown whether anticipatory gait control to avoid an obstacle is affected in MCI. Objective: Using the dual-task paradigm, we aim to assess whether gait control is affected during obstacle negotiation challenges in older adults with MCI. Methods: Seventy-nine participants (mean age = 72.0 ± 2.7 years; women = 30.3%) from the “Gait and Brain Study” were included in this study (controls = 27; MCI = 52). In order to assess the anticipatory control behaviour for obstacle negotiation, a 6-m electronic walkway embedded with sensors recorded foot prints to measure gait speed and step length variability, during early (3 steps before the late phase) and late (3 steps before the obstacle) pre-crossing phases of an ad hoc obstacle, set at 15% of participant’s height. Participants walked under single- and dual-task gait (counting backwards by 1’s from 100 while walking) conditions. Three-way mixed repeated-measures analysis of variance models examined differences in gait performance between groups when transitioning between pre-crossing phases towards an obstacle during single- and dual-task conditions. Analyses were adjusted for age, sex, years of education, lower limb function, fear of falling, medical status, depressive symptoms, baseline gait speed and executive function. Results: A significant three-way interaction among groups, pre-crossing phases and task showed that participants with MCI attenuated the gait deceleration (p = 0.02) and performed fewer step length adjustments (p = 0.03) when approaching the obstacle compared with controls while dual-tasking. These interactions were attenuated when executive function performance was added as a covariate in the adjusted statistical model. Conclusion: Older adults with MCI attenuate the anticipatory gait adjustments needed to avoid an obstacle when dual-tasking. Deficits in higher-order cognitive processing may limit obstacle negotiation capabilities in MCI populations, being a potential falls risk factor.


2015 ◽  
Vol 74 (OCE4) ◽  
Author(s):  
E. Laird ◽  
H. McNulty ◽  
M. Ward ◽  
L. Hoey ◽  
J.J. Strain ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6159
Author(s):  
Valeria Belluscio ◽  
Gabriele Casti ◽  
Marco Ferrari ◽  
Valentina Quaresima ◽  
Maria Sofia Sappia ◽  
...  

Increased oxygenated hemoglobin concentration of the prefrontal cortex (PFC) has been observed during linear walking, particularly when there is a high attention demand on the task, like in dual-task (DT) paradigms. Despite the knowledge that cognitive and motor demands depend on the complexity of the motor task, most studies have only focused on usual walking, while little is known for more challenging tasks, such as curved paths. To explore the relationship between cortical activation and gait biomechanics, 20 healthy young adults were asked to perform linear and curvilinear walking trajectories in single-task and DT conditions. PFC activation was assessed using functional near-infrared spectroscopy, while gait quality with four inertial measurement units. The Figure-of-8-Walk-Test was adopted as the curvilinear trajectory, with the “Serial 7s” test as concurrent cognitive task. Results show that walking along curvilinear trajectories in DT led to increased PFC activation and decreased motor performance. Under DT walking, the neural correlates of executive function and gait control tend to be modified in response to the cognitive resources imposed by the motor task. Being more representative of real-life situations, this approach to curved walking has the potential to reveal crucial information and to improve people’ s balance, safety, and life’s quality.


2015 ◽  
Vol 21 (7) ◽  
pp. 519-530 ◽  
Author(s):  
Brittany C. LeMonda ◽  
Jeannette R. Mahoney ◽  
Joe Verghese ◽  
Roee Holtzer

AbstractThe Walking While Talking (WWT) dual-task paradigm is a mobility stress test that predicts major outcomes, including falls, frailty, disability, and mortality in aging. Certain personality traits, such as neuroticism, extraversion, and their combination, have been linked to both cognitive and motor outcomes. We examined whether individual differences in personality dimensions of neuroticism and extraversion predicted dual-task performance decrements (both motor and cognitive) on a WWT task in non-demented older adults. We hypothesized that the combined effect of high neuroticism-low extraversion would be related to greater dual-task costs in gait velocity and cognitive performance in non-demented older adults. Participants (N=295; age range,=65–95 years; female=164) completed the Big Five Inventory and WWT task involving concurrent gait and a serial 7’s subtraction task. Gait velocity was obtained using an instrumented walkway. The high neuroticism-low extraversion group incurred greater dual-task costs (i.e., worse performance) in both gait velocity {95% confidence interval (CI) [−17.68 to −3.07]} and cognitive performance (95% CI [−19.34 to −2.44]) compared to the low neuroticism-high extraversion group, suggesting that high neuroticism-low extraversion interferes with the allocation of attentional resources to competing task demands during the WWT task. Older individuals with high neuroticism-low extraversion may be at higher risk for falls, mobility decline and other adverse outcomes in aging. (JINS, 2015, 21, 519–530)


2001 ◽  
Vol 44 (3) ◽  
pp. 399-426 ◽  
Author(s):  
Wilma Koutstaal ◽  
Daniel L. Schacter ◽  
Carolyn Brenner

2019 ◽  
Author(s):  
Hamid Allahverdipour ◽  
Iman Dianat ◽  
Galavizh Mameh ◽  
mohammad Asghari Jafarabadi

Abstract Background: The aim of this study was to evaluate the effects of cognitive and physical loads on dynamic and static balance of older adults under single, dual and multi-task conditions. Methods: The effects of single versus combined (dual-task and multi-task) cognitive (to speak out the name of the weekdays in a reverse order) and physical (with three levels including handling weights of 1kg, 2kg and 3kg in each hand) loads on dynamic and static balance of 42 older adults (21 males and 21 females), aged ≥ 60 years were studied. Dynamic and static balance measures were evaluated using the Timed Up and Go (TUG) and stabilometer (sway index) tests, respectively. Results: The TUG speed of female participants was generally slower than that of male participants. Cognitive task influenced the participants’ dynamic balance during the dual-task conditions, while the static balance was not affected in this phase. The dynamic and static balance measures were more influenced when performing the multi-tasks than when doing the dual-tasks. The effects of various levels of physical demand on the dynamic balance varied greatly under dual- and multi-task conditions. Conclusions: The findings add to the understanding of the factors influencing the elderly balance and control under cognitive and physical functioning.


Sign in / Sign up

Export Citation Format

Share Document