scholarly journals Evaluating In Silico the Potential Health and Environmental Benefits of Houseplant Volatile Organic Compounds for an Emerging ‘Indoor Forest Bathing’ Approach

Author(s):  
Valentina Roviello ◽  
Pasqualina Liana Scognamiglio ◽  
Ugo Caruso ◽  
Caterina Vicidomini ◽  
Giovanni N. Roviello

The practice of spending time in green areas to gain the health benefits provided by trees is well known, especially in Asia, as ‘forest bathing’, and the consequent protective and experimentally detectable effects on the human body have been linked to the biogenic volatile organic compounds released by plants. Houseplants are common in houses over the globe and are particularly appreciated for aesthetic reasons as well for their ability to purify air from some environmental volatile pollutants indoors. However, to the best of our knowledge, no attempt has been made to describe the health benefits achievable from houseplants thanks to the biogenic volatile organic compounds released, especially during the day, from some of them. Therefore, we performed the present study, based on both a literature analysis and in silico studies, to investigate whether the volatile compounds and aerosol constituents emitted by some of the most common houseplants (such as peace lily plant, Spathiphyllum wallisii, and iron plant, Aspidistra eliator) could be exploited in ‘indoor forest bathing’ approaches, as proposed here for the first time not only in private houses but also public spaces, such as offices, hospitals, and schools. By using molecular docking (MD) and other in silico methodologies for estimating vapor pressures and chemico-physical/pharmacokinetic properties prediction, we found that β-costol is an organic compound, emitted in appreciable amounts by the houseplant Spathiphyllum wallisii, endowed with potential antiviral properties as emerged by our MD calculations in a SARS-CoV-2 Mpro (main protease) inhibition study, together with sesquirosefuran. Our studies suggest that the anti-COVID-19 potential of these houseplant-emitted compounds is comparable or even higher than known Mpro inhibitors, such as eugenol, and sustain the utility of houseplants as indoor biogenic volatile organic compound emitters for immunity boosting and health protection.

2011 ◽  
Vol 45 (34) ◽  
pp. 6191-6196 ◽  
Author(s):  
Yu Huang ◽  
Steven Sai Hang Ho ◽  
Kin Fai Ho ◽  
Shun Cheng Lee ◽  
Yuan Gao ◽  
...  

2016 ◽  
Vol 9 (5) ◽  
pp. 1959-1976 ◽  
Author(s):  
Chun Zhao ◽  
Maoyi Huang ◽  
Jerome D. Fast ◽  
Larry K. Berg ◽  
Yun Qian ◽  
...  

Abstract. Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface scheme CLM4 (Community Land Model version 4.0) in the Weather Research and Forecasting model with chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a stand-alone vegetation map that differs from what is used by land surface schemes. This improved modeling framework is used to investigate the impact of two land surface schemes, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provided an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface schemes do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry and, consequently, secondary organic aerosol formation.


2020 ◽  
Vol 19 (1) ◽  
pp. 43-56
Author(s):  
Veerapas Na Roi-et ◽  
◽  
Supawat Chaikasem ◽  

Emission of volatile organic compounds (VOCs) from photocopiers was investigated to assess the potential health impacts on inhalation exposure to VOCs. VOCs samples were collected during working hours using SKC VOCs 575 series passive sample. Twenty-one quantified VOCs were measured and analyzed by GC-MS/MS. The results showed that the total VOCs concentration emitted in the photocopy centers A and B were 2.29×104 and 2.32×104 µg/m3, respectively. The highest detected chemical was trans-1,2-Dichloroethene at about 2.18×104 (photocopy center A) and 2.15×104 µg/m3 (photocopy center B (The results reveal that the non-carcinogenic risk for inhalation exposure to m-Xylene, p-Xylene, and trans-1,2-Dichloroethene were in the range 0.94-1.53 and 1.19-1.79 and 51.54-52.23, respectively, resulting in the hazard index (HI) of non-carcinogenic VOCs in total being greater than 1.0. This indicated that the cumulative effects of inhalation exposure to VOCs at low concentrations should be of concern, even though it does not exceed the occupational exposure limits and Threshold Limit Values-Time Weighted Average for the mixtures (TLV-TWAmix). Plants display a greener solution to reduce indoor air pollution. The bio-concentration levels of total VOCs in Epipremnum aureum were noted as 74.71 to 174.42, signifying that E. aureum is effective for removal of VOCs naturally and sustainably.


Sign in / Sign up

Export Citation Format

Share Document