scholarly journals Research on Large-Scale Urban Shrinkage and Expansion in the Yellow River Affected Area Using Night Light Data

2020 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Wenhui Niu ◽  
Haoming Xia ◽  
Ruimeng Wang ◽  
Li Pan ◽  
Qingmin Meng ◽  
...  

As the land use issue, caused by urban shrinkage in China, is becoming more and more prominent, research on urban shrinkage and expansion has become particularly challenging and urgent. Based on the points of interest (POI) data, this paper redefines the scope, quantity, and area of natural cities by using threshold methods, which accurately identify the shrinkage and expansion of cities in the Yellow River affected area using night light data in 2013 and 2018. The results show that: (1) there are 3130 natural cities (48,118.75 km2) in the Yellow River affected area, including 604 shrinking cities (8407.50 km2) and 2165 expanding cities (32,972.75 km2). (2) The spatial distributions of shrinking and expanding cities are quite different. The shrinking cities are mainly located in the upper Yellow River affected area, except for the administrative cities of Lanzhou and Yinchuan; the expanding cities are mainly distributed in the middle and lower Yellow River affected area, and the administrative cities of Lanzhou and Yinchuan. (3) Shrinking and expanding cities are typically smaller cities. The research results provide a quick data supported approach for regional urban planning and land use management, for when regional and central governments formulate the outlines of urban development monitoring and regional planning.

2013 ◽  
Vol 864-867 ◽  
pp. 2403-2407 ◽  
Author(s):  
Guo Tao Dong ◽  
Kui Huang ◽  
Su Zhen Dang ◽  
Xiao Wei Gu ◽  
Wen Li Yang

Diaokou River is one of the old courses of the Yellow River access to the sea before 1976 and its estuarine delta is an important part of National Nature Reserve of Yellow River Delta. The Yellow River Conservancy Commission decided the ecological water supplement to the wetland during the water and sediment regulation period in 2010. In this study, we analyzed the land use and land cover changes before and after the ecological water supplement in Diaokou River by using HJ-1B CCD data. The impact of the ecological water supplement on land use and land cover changes in Diaokou River was remarkable. The expansion of shrub-grassland and water body at large scale is conspicuous, while decreasing areas of shallows was 15.03 km2 and unutilized land decreasing amplitude was 28%. The main area of land use change was in Yiqianer protected areas, where concentrated in the estuary of the Diaokou River.


Author(s):  
Qinglong Ding ◽  
Yang Chen ◽  
Lingtong Bu ◽  
Yanmei Ye

The past decades were witnessing unprecedented habitat degradation across the globe. It thus is of great significance to investigate the impacts of land use change on habitat quality in the context of rapid urbanization, particularly in developing countries. However, rare studies were conducted to predict the spatiotemporal distribution of habitat quality under multiple future land use scenarios. In this paper, we established a framework by coupling the future land use simulation (FLUS) model with the Intergrated Valuation of Environmental Services and Tradeoffs (InVEST) model. We then analyzed the habitat quality change in Dongying City in 2030 under four scenarios: business as usual (BAU), fast cultivated land expansion scenario (FCLE), ecological security scenario (ES) and sustainable development scenario (SD). We found that the land use change in Dongying City, driven by urbanization and agricultural reclamation, was mainly characterized by the transfer of cultivated land, construction land and unused land; the area of unused land was significantly reduced. While the habitat quality in Dongying City showed a degradative trend from 2009 to 2017, it will be improved from 2017 to 2030 under four scenarios. The high-quality habitat will be mainly distributed in the Yellow River Estuary and coastal areas, and the areas with low-quality habitat will be concentrated in the central and southern regions. Multi-scenario analysis shows that the SD will have the highest habitat quality, while the BAU scenario will have the lowest. It is interesting that the ES scenario fails to have the highest capacity to protect habitat quality, which may be related to the excessive saline alkali land. Appropriate reclamation of the unused land is conducive to cultivated land protection and food security, but also improving the habitat quality and giving play to the versatility and multidimensional value of the agricultural landscape. This shows that the SD of comprehensive coordination of urban development, agricultural development and ecological protection is an effective way to maintain the habitat quality and biodiversity.


2010 ◽  
Vol 136 (1) ◽  
pp. 106-115 ◽  
Author(s):  
Yaqin Qiu ◽  
Yangwen Jia ◽  
Jincheng Zhao ◽  
Xuehong Wang ◽  
Jeff Bennett ◽  
...  

2019 ◽  
Vol 11 (14) ◽  
pp. 3818
Author(s):  
Jun Qiu ◽  
Tie-Jian Li ◽  
Fang-Fang Li

Large-scale reservoirs have played a significant role in meeting various water demands and socio-economic development, while they also lead to undeniable impacts on the environment and ecology. The Longyangxia reservoir located on the Yellow River is the first large-scale reservoir on the upper Yellow River with a control area of 18% of the entire Yellow River Basin. Since it was put into operation in 1987, it has made great contributions to the national economy for over 30 years. In this study, the socio-economic benefits of the Longyangxia reservoir in power generation, water supply, flood control, and ice prevention are investigated. More importantly, its impacts on the ecology and environment are also presented and analyzed, such as the impacts on river morphology, flow regimes, peak flow, fish, phytoplankton, and zooplankton. It can be concluded that the construction of the Longyangxia reservoir contributes greatly to socio-economic benefits, the water area nearby has formed a new ecological environment, and the trophic level of the aquatic environment has probably increased.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Fei Ye ◽  
Nan Qin ◽  
Xiang Gao ◽  
Xue-yong Quan ◽  
Xian-zhuo Qin ◽  
...  

The Lanzhou Yellow River Tunnel is the first metro shield tunnel that undercrosses the Yellow River in China. It was completed after successfully overcoming several construction challenges, including strata with a high proportion of large-sized sandy cobble stratum being saturated, large-scale sand pits along the bank of the Yellow River, and a combination of boulders and erratic blocks of rock. Given the difficulties in constructing the tunnel, this paper summarizes the scheme employed to transform the cutter and cutter head design to be applicable to sandy cobble stratum and the key technology used to form the slurry film to facilitate crossing the sand pits in a systematic way. The transformation scheme primarily involved the addition of an adjusting device to control the aperture ratio of the shield on the cutter head, a protective device for the hob hub, and a protective device for the piston rod in the oil cylinder of the crusher. The implementation of measures mentioned above guarantees the safe completion of the tunnel, which can provide a reference for similar projects.


2019 ◽  
Vol 11 (7) ◽  
pp. 2176 ◽  
Author(s):  
Wei Wang ◽  
Lin Sun ◽  
Yi Luo

The Grain to Green Project (GTGP), a large ecological restoration project aiming to control soil erosion and improve the ecological environment, has been implemented since 1999 and has led to great land use changes with decreased farmland and increased forest and grass, and significant vegetation variations. Understanding vegetation variations for different land use types is important for accessing the present vegetation development and providing scientific guidance for future ecological restoration design and regional sustainable development. With two land use maps and MODIS LAI data, trend analysis, fluctuation analysis, and R/S methods were applied to analyze the vegetation dynamic changes and sustainability for converted land use types from cropland and unconverted types over 2000–2015 in the upper and middle reaches of the Yellow River. The results obtained were as follows: (1) Vegetation greening was remarkable in the entire study region (0.036 yr−1). The increasing rate was higher in wetter conditions with AI < 3 (0.036–0.053 yr−1) than arid regions with AI > 3 (0.012–0.024 yr−1). (2) Vegetation improved faster for converted forestland, shrubland, and grassland than unconverted types under similar drying conditions. Converted shrubland and grassland had a larger relative change than converted forestland. (3) Converted land use types generally exhibited stronger fluctuation than unconverted types with small differences among types. (4) Vegetation exhibited a sustainable increasing trend in the future, which accounted for more than 73.1% of the region, mainly distributed in the middle reach of the Yellow River. Vegetation restoration exerted important influences on vegetation greening and the effect was stronger for converted types than unconverted types.


Sign in / Sign up

Export Citation Format

Share Document