scholarly journals Residual Multi-Attention Classification Network for A Forest Dominated Tropical Landscape Using High-Resolution Remote Sensing Imagery

2021 ◽  
Vol 10 (1) ◽  
pp. 22
Author(s):  
Tong Yu ◽  
Wenjin Wu ◽  
Chen Gong ◽  
Xinwu Li

Tropical forests are of vital importance for maintaining biodiversity, regulating climate and material cycles while facing deforestation, agricultural reclamation, and managing various pressures. Remote sensing (RS) can support effective monitoring and mapping approaches for tropical forests, and to facilitate this we propose a deep neural network with an encoder–decoder architecture here to classify tropical forests and their environment. To deal with the complexity of tropical landscapes, this method utilizes a multi-scale convolution neural network (CNN) to expand the receptive field and extract multi-scale features. The model refines the features with several attention modules and fuses them through an upsampling module. A two-stage training strategy is proposed to alleviate misclassifications caused by sample imbalances. A joint loss function based on cross-entropy loss and the generalized Dice loss is applied in the first stage, and the second stage used the focal loss to fine-tune the weights. As a case study, we use Hainan tropical reserves to test the performance of this model. Compared with four state-of-the-art (SOTA) semantic segmentation networks, our network achieves the best performance with two Hainan datasets (mean intersection over union (MIoU) percentages of 85.78% and 82.85%). We also apply the new model to classify a public true color dataset which has 17 semantic classes and obtain results with an 83.75% MIoU. This further demonstrates the applicability and potential of this model in complex classification tasks.

2020 ◽  
Vol 9 (4) ◽  
pp. 189 ◽  
Author(s):  
Hongxiang Guo ◽  
Guojin He ◽  
Wei Jiang ◽  
Ranyu Yin ◽  
Lei Yan ◽  
...  

Automatic water body extraction method is important for monitoring floods, droughts, and water resources. In this study, a new semantic segmentation convolutional neural network named the multi-scale water extraction convolutional neural network (MWEN) is proposed to automatically extract water bodies from GaoFen-1 (GF-1) remote sensing images. Three convolutional neural networks for semantic segmentation (fully convolutional network (FCN), Unet, and Deeplab V3+) are employed to compare with the water bodies extraction performance of MWEN. Visual comparison and five evaluation metrics are used to evaluate the performance of these convolutional neural networks (CNNs). The results show the following. (1) The results of water body extraction in multiple scenes using the MWEN are better than those of the other comparison methods based on the indicators. (2) The MWEN method has the capability to accurately extract various types of water bodies, such as urban water bodies, open ponds, and plateau lakes. (3) By fusing features extracted at different scales, the MWEN has the capability to extract water bodies with different sizes and suppress noise, such as building shadows and highways. Therefore, MWEN is a robust water extraction algorithm for GaoFen-1 satellite images and has the potential to conduct water body mapping with multisource high-resolution satellite remote sensing data.


2021 ◽  
Vol 13 (24) ◽  
pp. 5015
Author(s):  
Libo Wang ◽  
Ce Zhang ◽  
Rui Li ◽  
Chenxi Duan ◽  
Xiaoliang Meng ◽  
...  

Assigning geospatial objects with specific categories at the pixel level is a fundamental task in remote sensing image analysis. Along with the rapid development of sensor technologies, remotely sensed images can be captured at multiple spatial resolutions (MSR) with information content manifested at different scales. Extracting information from these MSR images represents huge opportunities for enhanced feature representation and characterisation. However, MSR images suffer from two critical issues: (1) increased scale variation of geo-objects and (2) loss of detailed information at coarse spatial resolutions. To bridge these gaps, in this paper, we propose a novel scale-aware neural network (SaNet) for the semantic segmentation of MSR remotely sensed imagery. SaNet deploys a densely connected feature network (DCFFM) module to capture high-quality multi-scale context, such that the scale variation is handled properly and the quality of segmentation is increased for both large and small objects. A spatial feature recalibration (SFRM) module was further incorporated into the network to learn intact semantic content with enhanced spatial relationships, where the negative effects of information loss are removed. The combination of DCFFM and SFRM allows SaNet to learn scale-aware feature representation, which outperforms the existing multi-scale feature representation. Extensive experiments on three semantic segmentation datasets demonstrated the effectiveness of the proposed SaNet in cross-resolution segmentation.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3232 ◽  
Author(s):  
Yan Liu ◽  
Qirui Ren ◽  
Jiahui Geng ◽  
Meng Ding ◽  
Jiangyun Li

Efficient and accurate semantic segmentation is the key technique for automatic remote sensing image analysis. While there have been many segmentation methods based on traditional hand-craft feature extractors, it is still challenging to process high-resolution and large-scale remote sensing images. In this work, a novel patch-wise semantic segmentation method with a new training strategy based on fully convolutional networks is presented to segment common land resources. First, to handle the high-resolution image, the images are split as local patches and then a patch-wise network is built. Second, training data is preprocessed in several ways to meet the specific characteristics of remote sensing images, i.e., color imbalance, object rotation variations and lens distortion. Third, a multi-scale training strategy is developed to solve the severe scale variation problem. In addition, the impact of conditional random field (CRF) is studied to improve the precision. The proposed method was evaluated on a dataset collected from a capital city in West China with the Gaofen-2 satellite. The dataset contains ten common land resources (Grassland, Road, etc.). The experimental results show that the proposed algorithm achieves 54.96% in terms of mean intersection over union (MIoU) and outperforms other state-of-the-art methods in remote sensing image segmentation.


2020 ◽  
Vol 12 (5) ◽  
pp. 784 ◽  
Author(s):  
Wei Guo ◽  
Weihong Li ◽  
Weiguo Gong ◽  
Jinkai Cui

Multi-scale object detection is a basic challenge in computer vision. Although many advanced methods based on convolutional neural networks have succeeded in natural images, the progress in aerial images has been relatively slow mainly due to the considerably huge scale variations of objects and many densely distributed small objects. In this paper, considering that the semantic information of the small objects may be weakened or even disappear in the deeper layers of neural network, we propose a new detection framework called Extended Feature Pyramid Network (EFPN) for strengthening the information extraction ability of the neural network. In the EFPN, we first design the multi-branched dilated bottleneck (MBDB) module in the lateral connections to capture much more semantic information. Then, we further devise an attention pathway for better locating the objects. Finally, an augmented bottom-up pathway is conducted for making shallow layer information easier to spread and further improving performance. Moreover, we present an adaptive scale training strategy to enable the network to better recognize multi-scale objects. Meanwhile, we present a novel clustering method to achieve adaptive anchors and make the neural network better learn data features. Experiments on the public aerial datasets indicate that the presented method obtain state-of-the-art performance.


2019 ◽  
Vol 39 (12) ◽  
pp. 1210001 ◽  
Author(s):  
王恩德 Wang Ende ◽  
齐凯 Qi Kai ◽  
李学鹏 Li Xuepeng ◽  
彭良玉 Peng Liangyu

Sign in / Sign up

Export Citation Format

Share Document