scholarly journals Traffic Inequality and Relations in Maritime Silk Road: A Network Flow Analysis

2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Naixia Mou ◽  
Haonan Ren ◽  
Yunhao Zheng ◽  
Jinhai Chen ◽  
Jiqiang Niu ◽  
...  

Maritime traffic can reflect the diverse and complex relations between countries and regions, such as economic trade and geopolitics. Based on the AIS (Automatic Identification System) trajectory data of ships, this study constructs the Maritime Silk Road traffic network. In this study, we used a complex network theory along with social network analysis and network flow analysis to analyze the spatial distribution characteristics of maritime traffic flow of the Maritime Silk Road; further, we empirically demonstrate the traffic inequality in the route. On this basis, we explore the role of the country in the maritime traffic system and the resulting traffic relations. There are three main results of this study. (1) The inequality in the maritime traffic of the Maritime Silk Road has led to obvious regional differences. Europe, west Asia, northeast Asia, and southeast Asia are the dominant regions of the Maritime Silk Road. (2) Different countries play different maritime traffic roles. Italy, Singapore, and China are the core countries in the maritime traffic network of the Maritime Silk Road; Greece, Turkey, Cyprus, Lebanon, and Israel have built a structure of maritime traffic flow in the eastern Mediterranean Sea, and Saudi Arabia serves as a bridge for maritime trade between Asia and Europe. (3) The maritime traffic relations show the characteristics of regionalization; countries in west Asia and the European Mediterranean region are clearly polarized, and competition–synergy relations have become the main form of maritime traffic relations among the countries in the dominant regions. Our results can provide a scientific reference for the coordinated development of regional shipping, improvement of maritime competition, cooperation strategies for countries, and adjustments in the organizational structure of ports along the Maritime Silk Road.

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4197 ◽  
Author(s):  
Hongchu Yu ◽  
Zhixiang Fang ◽  
Feng Lu ◽  
Alan T. Murray ◽  
Zhiyuan Zhao ◽  
...  

Automatic Identification System (AIS) data could support ship movement analysis, and maritime network construction and dynamic analysis. This study examines the global maritime network dynamics from multi-layers (bulk, container, and tanker) and multidimensional (e.g., point, link, and network) structure perspectives. A spatial-temporal framework is introduced to construct and analyze the global maritime transportation network dynamics by means of big trajectory data. Transport capacity and stability are exploited to infer spatial-temporal dynamics of system nodes and links. Maritime network structure changes and traffic flow dynamics grouping are then possible to extract. This enables the global maritime network between 2013 and 2016 to be investigated, and the differences between the countries along the 21st-century Maritime Silk Road and other countries, as well as the differences between before and after included by 21st-century Maritime Silk Road to be revealed. Study results indicate that certain countries, such as China, Singapore, Republic of Korea, Australia, and United Arab Emirates, build new corresponding shipping relationships with some ports of countries along the Silk Road and these new linkages carry significant traffic flow. The shipping dynamics exhibit interesting geographical and spatial variations. This study is meaningful to policy formulation, such as cooperation and reorientation among international ports, evaluating the adaptability of a changing traffic flow and navigation environment, and integration of the maritime economy and transportation systems.


2020 ◽  
Vol 9 (4) ◽  
pp. 265 ◽  
Author(s):  
Yijia Xiao ◽  
Yanming Chen ◽  
Xiaoqiang Liu ◽  
Zhaojin Yan ◽  
Liang Cheng ◽  
...  

Monitoring maritime oil flow is important for the security and stability of energy transportation, especially since the “21st Century Maritime Silk Road” (MSR) concept was proposed. The U.S. Energy Information Administration (EIA) provides public annual oil flow data of maritime oil chokepoints, which do not reflect subtle changes. Therefore, we used the automatic identification system (AIS) data from 2014 to 2016 and applied the proposed technical framework to four chokepoints (the straits of Malacca, Hormuz, Bab el-Mandeb, and the Cape of Good Hope) within the MSR region. The deviations and the statistical values of the annual oil flow from the results estimated by the AIS data and the EIA data, as well as the general direction of the oil flow, demonstrate the reliability of the proposed framework. Further, the monthly and seasonal cycles of the oil flows through the four chokepoints differ significantly in terms of the value and trend but generally show an upward trend. Besides, the first trough of the oil flow through the straits of Hormuz and Malacca corresponds with the military activities of the U.S. in 2014, while the second is owing to the outbreak of the Middle East Respiratory Syndrome in 2015.


Author(s):  
Lei Lin ◽  
Siyuan Gong ◽  
Srinivas Peeta ◽  
Xia Wu

The advent of connected and autonomous vehicles (CAVs) will change driving behavior and travel environment, and provide opportunities for safer, smoother, and smarter road transportation. During the transition from the current human-driven vehicles (HDVs) to a fully CAV traffic environment, the road traffic will consist of a “mixed” traffic flow of HDVs and CAVs. Equipped with multiple sensors and vehicle-to-vehicle communications, a CAV can track surrounding HDVs and receive trajectory data of other CAVs in communication range. These trajectory data can be leveraged with recent advances in deep learning methods to potentially predict the trajectories of a target HDV. Based on these predictions, CAVs can react to circumvent or mitigate traffic flow oscillations and accidents. This study develops attention-based long short-term memory (LSTM) models for HDV longitudinal trajectory prediction in a mixed flow environment. The model and a few other LSTM variants are tested on the Next Generation Simulation US 101 dataset with different CAV market penetration rates (MPRs). Results illustrate that LSTM models that utilize historical trajectories from surrounding CAVs perform much better than those that ignore information even when the MPR is as low as 0.2. The attention-based LSTM models can provide more accurate multi-step longitudinal trajectory predictions. Further, grid-level average attention weight analysis is conducted and the CAVs with higher impact on the target HDV’s future trajectories are identified.


2021 ◽  
Vol 10 (11) ◽  
pp. 757
Author(s):  
Pin Nie ◽  
Zhenjie Chen ◽  
Nan Xia ◽  
Qiuhao Huang ◽  
Feixue Li

Automatic Identification System (AIS) data have been widely used in many fields, such as collision detection, navigation, and maritime traffic management. Similarity analysis is an important process for most AIS trajectory analysis topics. However, most traditional AIS trajectory similarity analysis methods calculate the distance between trajectory points, which requires complex and time-consuming calculations, often leading to substantial errors when processing AIS trajectory data characterized by substantial differences in length or uneven trajectory points. Therefore, we propose a cell-based similarity analysis method that combines the weight of the direction and k-neighborhood (WDN-SIM). This method quantifies the similarity between trajectories based on the degree of proximity and differences in motion direction. In terms of its effectiveness and efficiency, WDN-SIM outperformed seven traditional methods for trajectory similarity analysis. Particularly, WDN-SIM has a high robustness to noise and can distinguish the similarities between trajectories under complex situations, such as when there are opposing directions of motion, large differences in length, and uneven point distributions.


2014 ◽  
Vol 694 ◽  
pp. 59-62 ◽  
Author(s):  
Fei Xiang Zhu ◽  
Li Ming Miao ◽  
Wen Liu

Currently, maritime safety administrations or shipping company had received a large number of vessel trajectory data from Automatic Identification System (AIS). In order to more efficiently carry out research of maritime traffic flow, ship behavior and maritime investigation, it is important to ensure the quality of the vessel trajectory data under compression condition. In classic Douglas-Peucker vector data compression algorithm, offset spatial distance of each point was the single factor in compression process. In order to overcome the shortcomings of classic Douglas-Peucker, a vessel trajectory multi-dimensional compression improved algorithm is proposed. In improved algorithm, the concept of single trajectory point importance which considers the point offset distance and other vessel handling factors, such as the vessel turning angle, speed variation, is proposed to as the compression index. Compared to classic Douglas-Peucker algorithm, experiment results show that the proposed multi-dimensional vessel trajectory compression improved algorithms can effectively retain characteristics of navigation.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Zhi-Hua Hu ◽  
Chan-Juan Liu ◽  
Paul Tae-Woo Lee

This article considers how the Japanese ports interact with the ports of China and along the 21st century Maritime Silk Road (MSR) while they are embedded in the global port network, especially in the context of China’s Belt and Road Initiative. At a port level, it primarily uses connectivity analysis to analyze the port relations and significances in the maritime network. In contrast, at the network level, it applies the methods from network sciences to analyze the significances of these maritime networks and the interactions among the maritime networks of Japan, China, and MSR. This article extracts a large-scale maritime network from ports and vessels’ profiles and data of vessels’ Automatic Identification System (AIS). It then examines the relations among the networks (including Japan, China, MSR, and global ports) after defining the maritime networks, network generation schemes, and port network analysis tools. Based on the analysis results and findings, this study draws some implications for regional ports and shipping development and the global supply network.


Author(s):  
Ritvik Chauhan ◽  
Ashish Dhamaniya ◽  
Shriniwas Arkatkar

A higher degree of heterogeneity in vehicle class and drivers, coupled with non-lane-based driving habits, creates several challenges in traffic flow analysis. This study investigates vehicles’ microscopic driving behavior at signalized intersections operating under weak lane discipline with mixed traffic (disordered) conditions. For this purpose, a comprehensive vehicular trajectory data set is developed from field-recorded video footage using a semi-automated tool for data extraction. Microscopic parameters such as relative velocity, spacing between vehicles, following time, lane preference, longitudinal and lateral speed profile, hysteresis evidence, and lateral movement of different vehicle classes during different traffic phases are presented in the study. The data is then segregated into three flow conditions: stopped flow, saturated flow, and unaffected flow. It is found that smaller vehicles prefer near-side lanes over far-side lanes. Motorized three-wheeler (3W) and motorized two-wheeler (2W) vehicle classes exhibit the greatest lateral velocity, lateral movement, and aggressiveness. This results in several interactions between vehicles as a function of different leader–follower vehicle pairs. Signalized intersections with more heterogeneity in traffic composition, especially higher composition of 2W and 3W vehicle classes, exhibit higher levels of aggressive driving behavior that might lower safety standards. As a practical application, ranges of various driving behavior parameter values for different leader–follower combinations and traffic conditions are quantified in the study. The observations and results are expected to help better understand prevailing driving behavior in disordered traffic and contribute toward robust calibration of microscopic traffic flow models for better replicating disordered traffic conditions at signalized intersections.


2021 ◽  
Vol 261 ◽  
pp. 03026
Author(s):  
Yi Yu ◽  
Hui Gong ◽  
Xianglun Mo

Based on the floating vehicle data, this paper analyzes the equilibrium of urban road network traffic flow. This can guide traffic flow distribution and provide reliable basis for traffic control. This paper starts with the quantitative analysis of the traffic network equilibrium, on the basis of verifying the validity of the floating car data, divides the urban road network into regions, and constructs an analysis model of the traffic flow equilibrium of the urban road network. The urban road traffic distribution model is constructed in accordance with the number of road traffic segments. On this basis, gini coefficient index is introduced to judge the road network flow balance, which is used to analyze the balance of each sub-region. By means of traffic guidance, signal control and other traffic control means, the traffic flow in each sub-area is balanced, and the traffic flow in the whole road network becomes balanced.


Sign in / Sign up

Export Citation Format

Share Document