scholarly journals Multi-Scenario Model of Plastic Waste Accumulation Potential in Indonesia Using Integrated Remote Sensing, Statistic and Socio-Demographic Data

2021 ◽  
Vol 10 (7) ◽  
pp. 481
Author(s):  
Anjar Dimara Sakti ◽  
Aprilia Nidia Rinasti ◽  
Elprida Agustina ◽  
Hanif Diastomo ◽  
Fickrie Muhammad ◽  
...  

As a significant contributor of plastic waste to the marine environment, Indonesia is striving to construct a national strategy for reducing plastic debris. Hence, the primary aim of this study is to create a model for plastic waste quantity originating from the mainland, accumulated in estuaries. This was achieved by compiling baseline data of marine plastic disposal from the mainland via comprehensive contextualisation of data generated by remote sensing technology and spatial analysis. The parameters used in this study cover plastic waste generation, land cover, population distribution, and human activity identification. These parameters were then used to generate the plastic waste disposal index; that is, the distribution of waste from the mainland, flowing through the river, and ultimately accumulating in the estuary. The plastic waste distribution is calculated based on the weighting method and overlap analysis between land and coastal areas. The results indicate that 0.6% of Indonesia, including metropolitan cities, account for the highest generation of plastic waste. Indicating of plastic releases to the ocean applied by of developing three different scenarios with the highest estimation 11.94 tonnes on a daily basis in an urban area, intended as the baseline study for setting priority zone for plastic waste management.

1997 ◽  
Author(s):  
Tom Wilson ◽  
Rebecca Baugh ◽  
Ron Contillo ◽  
Tom Wilson ◽  
Rebecca Baugh ◽  
...  

1995 ◽  
Vol 32 (2) ◽  
pp. 77-83
Author(s):  
Y. Yüksel ◽  
D. Maktav ◽  
S. Kapdasli

Submarine pipelines must be designed to resist wave and current induced hydrodynamic forces especially in and near the surf zone. They are buried as protection against forces in the surf zone, however this procedure is not always feasible particularly on a movable sea bed. For this reason the characteristics of the sediment transport on the construction site of beaches should be investigated. In this investigation, the application of the remote sensing method is introduced in order to determine and observe the coastal morphology, so that submarine pipelines may be protected against undesirable seabed movement.


2021 ◽  
Vol 11 (15) ◽  
pp. 6923
Author(s):  
Rui Zhang ◽  
Zhanzhong Tang ◽  
Dong Luo ◽  
Hongxia Luo ◽  
Shucheng You ◽  
...  

The use of remote sensing technology to monitor farmland is currently the mainstream method for crop research. However, in cloudy and misty regions, the use of optical remote sensing image is limited. Synthetic aperture radar (SAR) technology has many advantages, including high resolution, multi-mode, and multi-polarization. Moreover, it can penetrate clouds and mists, can be used for all-weather and all-time Earth observation, and is sensitive to the shape of ground objects. Therefore, it is widely used in agricultural monitoring. In this study, the polarization backscattering coefficient on time-series SAR images during the rice-growing period was analyzed. The rice identification results and accuracy of InSAR technology were compared with those of three schemes (single-time-phase SAR, multi-time-phase SAR, and combination of multi-time-phase SAR and InSAR). Results show that VV and VH polarization coherence coefficients can well distinguish artificial buildings. In particular, VV polarization coherence coefficients can well distinguish rice from water and vegetation in August and September, whereas VH polarization coherence coefficients can well distinguish rice from water and vegetation in August and October. The rice identification accuracy of single-time series Sentinel-1 SAR image (78%) is lower than that of multi-time series SAR image combined with InSAR technology (81%). In this study, Guanghan City, a cloudy region, was used as the study site, and a good verification result was obtained.


Data ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 63
Author(s):  
Dong Chen ◽  
Varada Shevade ◽  
Allison Baer ◽  
Jiaying He ◽  
Amanda Hoffman-Hall ◽  
...  

Malaria is a serious infectious disease that leads to massive casualties globally. Myanmar is a key battleground for the global fight against malaria because it is where the emergence of drug-resistant malaria parasites has been documented. Controlling the spread of malaria in Myanmar thus carries global significance, because the failure to do so would lead to devastating consequences in vast areas where malaria is prevalent in tropical/subtropical regions around the world. Thanks to its wide and consistent spatial coverage, remote sensing has become increasingly used in the public health domain. Specifically, remote sensing-based land cover/land use (LCLU) maps present a powerful tool that provides critical information on population distribution and on the potential human-vector interactions interfaces on a large spatial scale. Here, we present a 30-meter LCLU map that was created specifically for the malaria control and eradication efforts in Myanmar. This bottom-up approach can be modified and customized to other vector-borne infectious diseases in Myanmar or other Southeastern Asian countries.


2013 ◽  
Vol 59 (215) ◽  
pp. 467-479 ◽  
Author(s):  
Jeffrey S. Deems ◽  
Thomas H. Painter ◽  
David C. Finnegan

AbstractLaser altimetry (lidar) is a remote-sensing technology that holds tremendous promise for mapping snow depth in snow hydrology and avalanche applications. Recently lidar has seen a dramatic widening of applications in the natural sciences, resulting in technological improvements and an increase in the availability of both airborne and ground-based sensors. Modern sensors allow mapping of vegetation heights and snow or ground surface elevations below forest canopies. Typical vertical accuracies for airborne datasets are decimeter-scale with order 1 m point spacings. Ground-based systems typically provide millimeter-scale range accuracy and sub-meter point spacing over 1 m to several kilometers. Many system parameters, such as scan angle, pulse rate and shot geometry relative to terrain gradients, require specification to achieve specific point coverage densities in forested and/or complex terrain. Additionally, snow has a significant volumetric scattering component, requiring different considerations for error estimation than for other Earth surface materials. We use published estimates of light penetration depth by wavelength to estimate radiative transfer error contributions. This paper presents a review of lidar mapping procedures and error sources, potential errors unique to snow surface remote sensing in the near-infrared and visible wavelengths, and recommendations for projects using lidar for snow-depth mapping.


2013 ◽  
Vol 415 ◽  
pp. 305-308
Author(s):  
Kun Zhang ◽  
Hai Feng Wang ◽  
Zhuang Li

With remote sensing technology and computer technology, remote sensing classification technology has been rapid progress. In the traditional classification of remote sensing technology, based on the combination of today's technology in the field of remote sensing image classification, some new developments and applications for land cover classification techniques to make more comprehensive elaboration. Using the minimum distance classifier extracts of the study area land use types. Ultimately extracted land use study area distribution image and make its analysis and evaluation.


Sign in / Sign up

Export Citation Format

Share Document