scholarly journals Visualizing Large-Scale Building Information Modeling Models within Indoor and Outdoor Environments Using a Semantics-Based Method

2021 ◽  
Vol 10 (11) ◽  
pp. 756
Author(s):  
Qingxiang Chen ◽  
Jing Chen ◽  
Wumeng Huang

Building information modeling (BIM), with detailed geometry and semantics of the indoor environment, has become an essential part of smart city development and city information modeling (CIM). However, visualizing large-scale BIM models within geographic information systems (GIS), such as virtual globes, remains a technological challenge with limited hardware resources. Previous methods generally removed indoor features in a single-source (BIM) scene to reduce the computational burden from outdoor views, which have not been applied to the multi-source and -scale geographic environment (e.g., virtual globes). This approach neglected special BIM semantics (e.g., transparent windows), which may miss a part of geographic features or buildings and cause unreasonable visualization. Besides, the method overlooked indoor visualization optimization, which may burden computing resources when visualizing big and complex buildings from indoor views. To address these problems, we propose a semantics-based method for visualizing large-scale BIM models within indoor and outdoor environments. First, we organize large-scale BIM models based on a latitude-longitude grid (LLG) in the outdoor environment; a multilayer cell-and-portal graph is used to index the structure of the BIM model and building entities. Second, we propose a scheduling algorithm to achieve the integrated visualization in indoor and outdoor environments considering BIM semantics. The application of the proposed method to a multi-scale and -source environment confirmed that it can achieve an effective and efficient visualization for huge BIM models in indoor-outdoor scenes. Compared with the previous study, the proposed method considers the BIM semantics and thus can visualize more complete features from outdoor and indoor views of BIM models in the virtual globe. Besides, the study only loads as visible data as possible, which can retain lower the volume of increased geometry, and thus keep a higher frame rate for the tested areas.

2021 ◽  
Vol 6 (24) ◽  
pp. 278-289
Author(s):  
Wan Nor Fa’aizah Wan Abdul Basir ◽  
Uznir Ujang ◽  
Zulkepli Majid

Building Information Modeling (BIM) is a technology that focusing on the building element properties to the construction components which cover the interior and exterior building, while Geographic Information System (GIS) describe to the technology that can provide the large-scale information which cover inside and outside buildings (spaces and areas). In construction project application, BIM technology already been used as a worldwide tool while GIS rarely been applied. Each technology contains their own advantages that can be utilized in the construction project application. To bring the best effective approach in construction project, the integration between BIM and GIS technology can be considered. This paper presented an attempt in integrating BIM and GIS by using FME as a data integration platform to solve the limitation of BIM in construction project by using advantages of GIS. Through this research, an investigation of the data exchange during integration process between BIM and GIS will be look up. By using this approach, it is possible to store the BIM and GIS data in one environment. The end results for this paper will cover the method of the data exchange between BIM to GIS and GIS to BIM. Besides that, this paper highlight how GIS can solve the limitation in BIM in construction project.


2021 ◽  
Vol 14 (1) ◽  
pp. 27
Author(s):  
Changqiang Wang ◽  
Aigong Xu ◽  
Xin Sui ◽  
Yushi Hao ◽  
Zhengxu Shi ◽  
...  

Seamless positioning systems for complex environments have been a popular focus of research on positioning safety for autonomous vehicles (AVs). In particular, the seamless high-precision positioning of AVs indoors and outdoors still poses considerable challenges and requires continuous, reliable, and high-precision positioning information to guarantee the safety of driving. To obtain effective positioning information, multiconstellation global navigation satellite system (multi-GNSS) real-time kinematics (RTK) and an inertial navigation system (INS) have been widely integrated into AVs. However, integrated multi-GNSS and INS applications cannot provide effective and seamless positioning results for AVs in indoor and outdoor environments due to limited satellite availability, multipath effects, frequent signal blockages, and the lack of GNSS signals indoors. In this contribution, multi-GNSS-tightly coupled (TC) RTK/INS technology is developed to solve the positioning problem for a challenging urban outdoor environment. In addition, ultrawideband (UWB)/INS technology is developed to provide accurate and continuous positioning results in indoor environments, and INS and map information are used to identify and eliminate UWB non-line-of-sight (NLOS) errors. Finally, an improved adaptive robust extended Kalman filter (AREKF) algorithm based on a TC integrated single-frequency multi-GNSS-TC RTK/UWB/INS/map system is studied to provide continuous, reliable, high-precision positioning information to AVs in indoor and outdoor environments. Experimental results show that the proposed scheme is capable of seamlessly guaranteeing the positioning accuracy of AVs in complex indoor and outdoor environments involving many measurement outliers and environmental interference effects.


2020 ◽  
Vol 6 ◽  
Author(s):  
Mohamed H. Elnabawi

There is increasing need to apply building information modeling (BIM) to low energy buildings, this includes building energy modeling (BEM). If a building energy model can be flawlessly generated from a BIM model, the energy simulation process can be better integrated within the design, can be more competent, and timesaving. However, concerns about both the reliability and integrity of the data transfer process and the interoperability between the BIM and BEM prevent any implementation of BIM-based energy modeling on a large scale. This study addresses the accuracy and integrity of BIM-based energy modeling by investigating how well Autodesk's Revit (BIM), in conjunction with two of the most used energy modeling programs (BEM) known as DesignBuilder and Virtual Environment (IES-ve), were integrated in terms of interoperability, including location and weather files, geometry, construction and materials, thermal zones, occupancy operating schedules, and HVAC systems. All misrepresented data during the interoperability process were identified, followed by benchmarking between the BIM-based energy modeling simulation outcomes and the actual energy consumption of the case study, to assess the reliability of the process. The investigation has revealed a number of interoperability issues regarding the BIM data input and BEM data interpretation. Overall, BIM-based energy modeling proved to be a promising tool for sustainable and low energy building design, however, the BIM to BEM process is a non-standardized method of producing building energy models as it varies from one modeler to another, and the BIM to BEM process. All these might slow down any possible application for the process and might cause some uncertainties for the professionals in the field applying it.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3944 ◽  
Author(s):  
Martin Velas ◽  
Michal Spanel ◽  
Tomas Sleziak ◽  
Jiri Habrovec ◽  
Adam Herout

This paper presents a human-carried mapping backpack based on a pair of Velodyne LiDAR scanners. Our system is a universal solution for both large scale outdoor and smaller indoor environments. It benefits from a combination of two LiDAR scanners, which makes the odometry estimation more precise. The scanners are mounted under different angles, thus a larger space around the backpack is scanned. By fusion with GNSS/INS sub-system, the mapping of featureless environments and the georeferencing of resulting point cloud is possible. By deploying SoA methods for registration and the loop closure optimization, it provides sufficient precision for many applications in BIM (Building Information Modeling), inventory check, construction planning, etc. In our indoor experiments, we evaluated our proposed backpack against ZEB-1 solution, using FARO terrestrial scanner as the reference, yielding similar results in terms of precision, while our system provides higher data density, laser intensity readings, and scalability for large environments.


Author(s):  
Alex Gerrard ◽  
Jian Zuo ◽  
George Zillante ◽  
Martin Skitmore

Building Information Modeling (BIM) is a modern approach to the design, documentation, delivery, and life cycle management of buildings through the use of project information databases coupled with object-based parametric modeling. BIM has the potential to revolutionize the Architecture, Engineering and Construction (AEC) industry in terms of the positive impact it may have on information flows, working relationships between project participants from different disciplines and the resulting benefits it may achieve through improvements to conventional methods. This chapter reviews the development of BIM, the extent to which BIM has been implemented in Australia, and the factors which have affected the up-take of BIM. More specifically, the objectives of this chapter are to investigate the adoption of BIM in the Australian AEC industry and factors that contribute towards the uptake (or non uptake) of BIM. These objectives are met by a review of the related literature in the first instance, followed by the presentation of the results of a 2007 postal questionnaire survey and telephone interviews of a random sample of professionals in the Australian AEC industry. The responses suggest that less than 25 percent of the sample had been involved in BIM – rather less than might be expected from reading the literature. Also, of those who have been involved with BIM, there has been very little interdisciplinary collaboration. The main barriers impeding the implementation of BIM widely across the Australian AEC industry are also identified. These were found to be primarily a lack of BIM expertise, lack of awareness and resistance to change. The benefits experienced as a result of using BIM are also discussed. These include improved design consistency, better coordination, cost savings, higher quality work, greater productivity and increased speed of delivery. In terms of conclusion, some suggestions are made concerning the underlying practical reasons for the slow up-take of BIM and the successes for those early adopters. Prospects for future improvement are discussed and proposals are also made for a large scale worldwide comparative study covering industry-wide participants.


Buildings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 229
Author(s):  
Jiayi Yan ◽  
Karen Kensek ◽  
Kyle Konis ◽  
Douglas Noble

Scientific visualization has been an essential process in the engineering field, enabling the tracking of large-scale simulation data and providing intuitive and comprehendible graphs and models that display useful data. For computational fluid dynamics (CFD) data, the need for scientific visualization is even more important given the complicated spatial data structure and large quantities of data points characteristic of CFD data. To better take advantage of CFD results for buildings, the potential use of virtual reality (VR) techniques cannot be overlooked in the development of building projects. However, the workflow required to bring CFD simulation results to VR has not been streamlined. Building information modeling (BIM) as a lifecycle tool for buildings includes as much information as possible for further applications. To this end, this study brings CFD visualization to VR using BIM tools and reports the evaluation and analysis of the results.


2013 ◽  
Author(s):  
John G. Rogers ◽  
Stuart Young ◽  
Jason Gregory ◽  
Carlos Nieto-Granda ◽  
Henrik I. Christensen

Sign in / Sign up

Export Citation Format

Share Document