scholarly journals A Dual-Path and Lightweight Convolutional Neural Network for High-Resolution Aerial Image Segmentation

2019 ◽  
Vol 8 (12) ◽  
pp. 582 ◽  
Author(s):  
Gang Zhang ◽  
Tao Lei ◽  
Yi Cui ◽  
Ping Jiang

Semantic segmentation on high-resolution aerial images plays a significant role in many remote sensing applications. Although the Deep Convolutional Neural Network (DCNN) has shown great performance in this task, it still faces the following two challenges: intra-class heterogeneity and inter-class homogeneity. To overcome these two problems, a novel dual-path DCNN, which contains a spatial path and an edge path, is proposed for high-resolution aerial image segmentation. The spatial path, which combines the multi-level and global context features to encode the local and global information, is used to address the intra-class heterogeneity challenge. For inter-class homogeneity problem, a Holistically-nested Edge Detection (HED)-like edge path is employed to detect the semantic boundaries for the guidance of feature learning. Furthermore, we improve the computational efficiency of the network by employing the backbone of MobileNetV2. We enhance the performance of MobileNetV2 with two modifications: (1) replacing the standard convolution in the last four Bottleneck Residual Blocks (BRBs) with atrous convolution; and (2) removing the convolution stride of 2 in the first layer of BRBs 4 and 6. Experimental results on the ISPRS Vaihingen and Potsdam 2D labeling dataset show that the proposed DCNN achieved real-time inference speed on a single GPU card with better performance, compared with the state-of-the-art baselines.

— In present generation the detection of vehicle using aerial images plays an important role and mot challenging. The video understanding, border security are the applications of aerial images. To improve the performance of the system different detection methods are introduced. But these methods take more time in detection process. To overcome these convolutional neural network are introduced which will produce the successful design system. the main intent of this paper is to present the recognition system for aerial images using convolutional neural network. The proposed method improves the accuracy and speed after the detection process. At last aerial image is obtained by matching the image and textual description of classes.


2019 ◽  
Vol 9 (9) ◽  
pp. 1816 ◽  
Author(s):  
Guangsheng Chen ◽  
Chao Li ◽  
Wei Wei ◽  
Weipeng Jing ◽  
Marcin Woźniak ◽  
...  

Recent developments in Convolutional Neural Networks (CNNs) have allowed for the achievement of solid advances in semantic segmentation of high-resolution remote sensing (HRRS) images. Nevertheless, the problems of poor classification of small objects and unclear boundaries caused by the characteristics of the HRRS image data have not been fully considered by previous works. To tackle these challenging problems, we propose an improved semantic segmentation neural network, which adopts dilated convolution, a fully connected (FC) fusion path and pre-trained encoder for the semantic segmentation task of HRRS imagery. The network is built with the computationally-efficient DeepLabv3 architecture, with added Augmented Atrous Spatial Pyramid Pool and FC Fusion Path layers. Dilated convolution enlarges the receptive field of feature points without decreasing the feature map resolution. The improved neural network architecture enhances HRRS image segmentation, reaching the classification accuracy of 91%, and the precision of recognition of small objects is improved. The applicability of the improved model to the remote sensing image segmentation task is verified.


2017 ◽  
Vol 9 (5) ◽  
pp. 446 ◽  
Author(s):  
Hongzhen Wang ◽  
Ying Wang ◽  
Qian Zhang ◽  
Shiming Xiang ◽  
Chunhong Pan

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1033
Author(s):  
Qiaodi Wen ◽  
Ziqi Luo ◽  
Ruitao Chen ◽  
Yifan Yang ◽  
Guofa Li

By detecting the defect location in high-resolution insulator images collected by unmanned aerial vehicle (UAV) in various environments, the occurrence of power failure can be timely detected and the caused economic loss can be reduced. However, the accuracies of existing detection methods are greatly limited by the complex background interference and small target detection. To solve this problem, two deep learning methods based on Faster R-CNN (faster region-based convolutional neural network) are proposed in this paper, namely Exact R-CNN (exact region-based convolutional neural network) and CME-CNN (cascade the mask extraction and exact region-based convolutional neural network). Firstly, we proposed an Exact R-CNN based on a series of advanced techniques including FPN (feature pyramid network), cascade regression, and GIoU (generalized intersection over union). RoI Align (region of interest align) is introduced to replace RoI pooling (region of interest pooling) to address the misalignment problem, and the depthwise separable convolution and linear bottleneck are introduced to reduce the computational burden. Secondly, a new pipeline is innovatively proposed to improve the performance of insulator defect detection, namely CME-CNN. In our proposed CME-CNN, an insulator mask image is firstly generated to eliminate the complex background by using an encoder-decoder mask extraction network, and then the Exact R-CNN is used to detect the insulator defects. The experimental results show that our proposed method can effectively detect insulator defects, and its accuracy is better than the examined mainstream target detection algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lin Wang ◽  
Xingfu Wang ◽  
Ammar Hawbani ◽  
Yan Xiong ◽  
Xu Zhang

With the development of science and technology, the middle volume and neural network in the semantic image segmentation of the codec show good development prospects. Its advantage is that it can extract richer semantic features, but this will cause high costs. In order to solve this problem, this article mainly introduces the codec based on a separable convolutional neural network for semantic image segmentation. This article proposes a codec based on a separable convolutional neural network for semantic image segmentation research methods, including the traditional convolutional neural network hierarchy into a separable convolutional neural network, which can reduce the cost of image data segmentation and improve processing efficiency. Moreover, this article builds a separable convolutional neural network codec structure and designs a semantic segmentation process, so that the codec based on a separable convolutional neural network is used for semantic image segmentation research experiments. The experimental results show that the average improvement of the dataset by the improved codec is 0.01, which proves the effectiveness of the improved SegProNet. The smaller the number of training set samples, the more obvious the performance improvement.


In this paper, the design of advanced road structure image segmentation approach using stroke width transformation (SWT) in convolution neural network (CNN) is proposed. The main intent of the proposed system is to acquire the aerial images for the vehicle. Basically, this image segmentation performs its operation in two forms they are operating phase and learning phase. Here the aerial image has enhanced by using the SWT transformation. Hence the main advantage of this proposes system is that it processes the entire operation in simple way with high speed. The SWT will capture the images of road areas in effective way. Hence the propose system has various features which will determine the color, width and many other.


Sign in / Sign up

Export Citation Format

Share Document