scholarly journals Chemical Structures of 4-Oxo-Flavonoids in Relation to Inhibition of Oxidized Low-Density Lipoprotein (LDL)-Induced Vascular Endothelial Dysfunction

2011 ◽  
Vol 12 (9) ◽  
pp. 5471-5489 ◽  
Author(s):  
Long Yi ◽  
Xin Jin ◽  
Chun-Ye Chen ◽  
Yu-Jie Fu ◽  
Ting Zhang ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Chengcheng Chang ◽  
Hongli Liu ◽  
Cong Wei ◽  
Liping Chang ◽  
Junqing Liang ◽  
...  

Vascular hyperpermeability resulting from distortion of endothelial junctions is associated with a number of cardiovascular diseases. Endothelial tight junction regulates the paracellular permeability of macromolecules, a function ofHuman Umbilical Vein Endothelial Cells(HUVEC) monolayers that can be regulated byoxidized Low-density Lipoprotein(ox-LDL). However, the understanding of drug regulation of vascular hyperpermeability is so far limited. This study thus aimed to investigate the role ofTongxinluo(TXL) in the maintenance of the vascular endothelial paracellular permeability. Here, changes in permeability were determined by measuring the paracellular flux of FITC-dextran 40000 (FD40), while protein expression and intercellular distribution were examined by western blot and immunofluorescence assay, respectively. We found that TXL alleviated the ox-LDL-induced increase in flux of FD40 and then reduced the hyperpermeability. Moreover, ox-LDL-induced disruptions of ZO-1, occludin, and claudin1 were also restored. This is via the activation of ERK1/2 in the vascular endothelial cells. Our results provide insights into the molecular mechanism by which TXL alleviates ox-LDL-induced hyperpermeability and provide the basis for further investigations of TXL as regulators of vascular barrier function.


2010 ◽  
Vol 108 (6) ◽  
pp. 1745-1756 ◽  
Author(s):  
Hsiu-Chung Ou ◽  
Tuzz-Ying Song ◽  
Yueh-Chiao Yeh ◽  
Chih-Yang Huang ◽  
Shun-Fa Yang ◽  
...  

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), originally identified as the major receptor for oxidized low-density lipoprotein (oxLDL) in endothelial cells, plays a major role in the pathology of vascular diseases. Green tea consumption is associated with reduced cardiovascular mortality in some epidemiological studies. In the present study, we hypothesized that the most abundant polyphenolic compound in tea, epigallocatechin-3-gallate (EGCG), can downregulate parameters of endothelial dysfunction by modulating LOX-1-regulated cell signaling. In cultured human umbilical vein endothelial cells (HUVECs), exposure to oxLDL (130 μg/ml), which led to an increase in LOX-1 expression at the RNA and protein levels, was abrogated by addition of EGCG or DPI, a well-known inhibitor of flavoproteins, suggesting the involvement of NADPH oxidase. Furthermore, oxLDL rapidly activated the membrane translocation of Rac-1 and p47phox and the subsequent induction of ROS generation, which was suppressed markedly by pretreatment with EGCG or anti-LOX-1 monoclonal antibody. OxLDL also increased p38 MAPK phosphorylation and decreased phosphorylation of the amino-terminal region of Akt, with maximal induction at about 30 min, and NF-κB phosphorylation within 1 h, resulting in redox-sensitive signaling. In addition, oxLDL diminished the expression of endothelial nitric oxide synthase (eNOS), enhanced the expression of endothelin-1 and adhesion molecules (ICAM, E-selectin, and monocyte chemoattractant protein-1), and increased the adherence of monocytic THP-1 cells to HUVECs. Pretreatment with EGCG, however, exerted significant cytoprotective effects in all events. These data suggest that EGCG inhibits the oxLDL-induced LOX-1-mediated signaling pathway, at least in part, by inhibiting NADPH oxidase and consequent ROS-enhanced LOX-1 expression, which contributes to further ROS generation and the subsequent activation of NF-κB via the p38 MAPK pathway. Results from this study may provide insight into a possible molecular mechanism by which EGCG suppresses oxLDL-mediated vascular endothelial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document