scholarly journals Maternal High Folic Acid Supplement Promotes Glucose Intolerance and Insulin Resistance in Male Mouse Offspring Fed a High-Fat Diet

2014 ◽  
Vol 15 (4) ◽  
pp. 6298-6313 ◽  
Author(s):  
Yifan Huang ◽  
Yonghan He ◽  
Xiaowei Sun ◽  
Yujie He ◽  
Ying Li ◽  
...  
Endocrinology ◽  
2018 ◽  
Vol 159 (9) ◽  
pp. 3235-3244 ◽  
Author(s):  
Wenli Liu ◽  
Wulin Aerbajinai ◽  
Hongzhen Li ◽  
Yueqin Liu ◽  
Oksana Gavrilova ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2109-2117 ◽  
Author(s):  
Elodie Riant ◽  
Aurélie Waget ◽  
Haude Cogo ◽  
Jean-François Arnal ◽  
Rémy Burcelin ◽  
...  

Although corroborating data indicate that estrogens influence glucose metabolism through the activation of the estrogen receptor α (ERα), it has not been established whether this pathway could represent an effective therapeutic target to fight against metabolic disturbances induced by a high-fat diet (HFD). To this end, we first evaluated the influence of chronic 17β-estradiol (E2) administration in wild-type ovariectomized mice submitted to either a normal chow diet or a HFD. Whereas only a modest effect was observed in normal chow diet-fed mice, E2 administration exerted a protective effect against HFD-induced glucose intolerance, and this beneficial action was abolished in ERα-deficient mice. Furthermore, E2 treatment reduced HFD-induced insulin resistance by 50% during hyperinsulinemic euglycemic clamp studies and improved insulin signaling (Akt phosphorylation) in insulin-stimulated skeletal muscles. Unexpectedly, we found that E2 treatment enhanced cytokine (IL-6, TNF-α) and plasminogen activator inhibitor-1 mRNA expression induced by HFD in the liver and visceral adipose tissue. Interestingly, although the proinflammatory effect of E2 was abolished in visceral adipose tissue from chimeric mice grafted with bone marrow cells from ERα-deficient mice, the beneficial effect of the hormone on glucose tolerance was not altered, suggesting that the metabolic and inflammatory effects of estrogens can be dissociated. Eventually comparison of sham-operated with ovariectomized HFD-fed mice demonstrated that endogenous estrogens levels are sufficient to exert a full protective effect against insulin resistance and glucose intolerance. In conclusion, the regulation of the ERα pathway could represent an effective strategy to reduce the impact of high-fat diet-induced type 2 diabetes.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yawei Guo ◽  
Xiaohui Zhu ◽  
Sha Zeng ◽  
Mingyi He ◽  
Xiurong Xing ◽  
...  

miRNA-10a is rhythmically expressed and regulates genes involved in lipid and glucose metabolism. However, the effects of miRNA-10a on obesity and glucose intolerance, as well as on the diurnal pattern of expression of circadian clock genes, remain unknown. We explored the effects of miRNA-10a-5p on insulin resistance and on the diurnal patterns of serum triglycerides and gut microbiota in high-fat diet- (HFD-) fed mice. The results showed that oral administration of miRNA-10a-5p significantly prevented body weight gain and improved glucose tolerance and insulin sensitivity in HFD-fed mice. Administration of miRNA-10a-5p also maintained the diurnal rhythm of Clock, Per2, and Cry1 expression, as well as serum glucose and triglyceride levels. Surprisingly, the diurnal oscillations of three genera of microbes, Oscillospira, Ruminococcus, and Lachnospiraceae, disrupted by HFD feeding, maintained by administration of miRNA-10a-5p. Moreover, a strong positive correlation was found between hepatic Clock expression and relative abundance of Lachnospiraceae, both in control mice (r=0.877) and in mice administered miRNA-10a-5p (r=0.853). Furthermore, we found that along with changes in Lachnospiraceae abundance, butyrate content in the feces maintained a diurnal rhythm after miRNA-10a-5p administration in HFD-fed mice. In conclusion, we suggest that miRNA-10a-5p may improve HFD-induced glucose intolerance and insulin resistance through the modulation of the diurnal rhythm of Lachnospiraceae and its metabolite butyrate. Therefore, miRNA-10a-5p may have preventative properties in subjects with metabolic disorders.


Endocrinology ◽  
2003 ◽  
Vol 144 (2) ◽  
pp. 500-508 ◽  
Author(s):  
Li Chen ◽  
B. L. G. Nyomba

High-fat diet and intrauterine growth retardation may predispose to obesity, insulin resistance, and type 2 diabetes. Because prenatal ethanol (ETOH) exposure causes intrauterine growth retardation, we investigated its interactions with postnatal high-fat diet on glucose tolerance and adipocyte-derived hormones in the rat offspring. High-fat-fed offspring had increased adiposity, serum leptin, and muscle uncoupling protein-3, but decreased adiponectin mRNA, compared with corresponding chow-fed groups. ETOH-exposed offspring had normal adiponectin, but increased resistin mRNA and protein, compared with controls, regardless of postnatal diet. Skeletal muscle glucose transporter-4 content was decreased after both ETOH exposure and high-fat feeding. Glycemic and insulin responses to an ip glucose challenge were equally increased in non-ETOH-exposed high-fat-fed offspring and in ETOH-exposed chow-fed offspring, with additive effects of ETOH and high-fat diet. Pancreatic insulin content was elevated only in non-ETOH-exposed high-fat-fed offspring. The data suggest that high-fat diet worsens glucose intolerance in offspring of rats exposed to ETOH. Prenatal ETOH exposure and postnatal high-fat diet might cause insulin resistance through separate mechanisms, involving resistin and adiponectin, respectively.


2021 ◽  
Vol 22 (15) ◽  
pp. 7995
Author(s):  
Jianfeng Du ◽  
Yu Tina Zhao ◽  
Hao Wang ◽  
Ling X. Zhang ◽  
Gangjian Qin ◽  
...  

Regulated/activated protein kinase (PRAK) plays a crucial role in modulating biological function. However, the role of PRAK in mediating cardiac dysfunction and metabolic disorders remains unclear. We examined the effects of deletion of PRAK on modulating cardiac function and insulin resistance in mice exposed to a high-fat diet (HFD). Wild-type and PRAK−/− mice at 8 weeks old were exposed to either chow food or HFD for a consecutive 16 weeks. Glucose tolerance tests and insulin tolerance tests were employed to assess insulin resistance. Echocardiography was employed to assess myocardial function. Western blot was used to determine the molecular signaling involved in phosphorylation of IRS-1, AMPKα, ERK-44/42, and irisin. Real time-PCR was used to assess the hypertrophic genes of the myocardium. Histological analysis was employed to assess the hypertrophic response, interstitial myocardial fibrosis, and apoptosis in the heart. Western blot was employed to determine cellular signaling pathway. HFD-induced metabolic stress is indicated by glucose intolerance and insulin intolerance. PRAK knockout aggravated insulin resistance, as indicated by glucose intolerance and insulin intolerance testing as compared with wild-type littermates. As compared with wild-type mice, hyperglycemia and hypercholesterolemia were manifested in PRAK-knockout mice following high-fat diet intervention. High-fat diet intervention displayed a decline in fractional shortening and ejection fraction. However, deletion of PRAK exacerbated the decline in cardiac function as compared with wild-type mice following HFD treatment. In addition, PRAK knockout mice enhanced the expression of myocardial hypertrophic genes including ANP, BNP, and βMHC in HFD treatment, which was also associated with an increase in cardiomyocyte size and interstitial fibrosis. Western blot indicated that deletion of PRAK induces decreases in phosphorylation of IRS-1, AMPKα, and ERK44/42 as compared with wild-type controls. Our finding indicates that deletion of PRAK promoted myocardial dysfunction, cardiac remodeling, and metabolic disorders in response to HFD.


2011 ◽  
Vol 301 (5) ◽  
pp. E825-E835 ◽  
Author(s):  
Lucy S. Jun ◽  
C. Parker Siddall ◽  
Evan D. Rosen

Adipose tissue controls energy homeostasis and systemic insulin sensitivity through the elaboration of a series of cytokines and hormones, collectively termed “adipokines.” We and others have identified Lcn2 as a novel adipokine, but its exact role in obesity-induced insulin resistance remains controversial. The aim of this study was to examine the metabolic phenotype of Lcn2−/− mice to clarify the role of Lcn2 in metabolism. Male and female Lcn2−/− and wild-type (WT) littermates were placed on either chow or high-fat diet (HFD) to characterize their metabolic phenotype. Studies included body weight and body composition, glucose and insulin tolerance tests, and adipokine expression studies in serum and in white adipose tissue (WAT). Neither chow nor HFD cohorts showed any differences in body weight or body composition. Chow-fed Lcn2−/− mice did not exhibit any difference in glucose homeostasis compared with WT mice. Fasting serum glucose levels were lower in the chow-fed Lcn2−/− mice, but this finding was not seen in the HFD cohort. Serum adiponectin, leptin, resistin, and RBP4 levels were not different between WT and Lcn2−/− on chow diet. HFD-fed male Lcn2−/− mice did display a small improvement in glucose tolerance, but no difference in insulin sensitivity was seen in either male or female Lcn2−/− mice on HFD. We conclude that the global ablation of Lcn2 has a minimal effect on obesity-associated glucose intolerance but does not appear to affect either age- or obesity-mediated insulin resistance in vivo.


2012 ◽  
Vol 213 (3) ◽  
pp. 285-291 ◽  
Author(s):  
Eriko Inoue ◽  
Toshihiro Ichiki ◽  
Kotaro Takeda ◽  
Hirohide Matsuura ◽  
Toru Hashimoto ◽  
...  

Obesity induces hypertrophy of adipocyte resulting in production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein 1 (MCP1 (CCL2)). These cytokines play an important role in the development of insulin resistance. Beraprost sodium (BPS), a prostaglandin I2 analogue, is reported to attenuate inflammation. In this study, we examined the effect of BPS on glucose metabolism in mice fed a high-fat diet (HFD). Four-week-old C57/B6 male mice were fed a HFD for 12 weeks (HFD group) and the treatment group received oral BPS (300 μg/kg per day) for the same period. Then, glucose metabolism, histological changes, and gene expression of white adipose tissue (WAT) were examined. Body weight was increased, and glucose intolerance and insulin resistance were developed in the HFD group. Treatment with BPS improved glucose tolerance and insulin action without body weight change. Histological analysis of WAT showed an increase in the size of adipocyte and macrophage infiltration in the HFD group, which was attenuated by BPS treatment. BPS reduced HFD-induced expression of MCP1 and TNF-α in WAT. BPS also attenuated hepatic steatosis induced by the HFD. These results suggest that BPS improved glucose intolerance possibly through suppression of inflammatory cytokines in WAT. BPS may be beneficial for the treatment of obesity-associated glucose intolerance.


Sign in / Sign up

Export Citation Format

Share Document