scholarly journals Thioredoxin 2 Offers Protection against Mitochondrial Oxidative Stress in H9c2 Cells and against Myocardial Hypertrophy Induced by Hyperglycemia

2017 ◽  
Vol 18 (9) ◽  
pp. 1958 ◽  
Author(s):  
Hong Li ◽  
Changqing Xu ◽  
Quanfeng Li ◽  
Xiuxiang Gao ◽  
Erkio Sugano ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-25 ◽  
Author(s):  
Lin-Lin Kang ◽  
Dong-Mei Zhang ◽  
Rui-Qing Jiao ◽  
Shu-Man Pan ◽  
Xiao-Juan Zhao ◽  
...  

Excessive fructose consumption induces oxidative stress and myocardial fibrosis. Antioxidant compound pterostilbene has cardioprotective effect in experimental animals. This study is aimed at investigating how fructose drove fibrotic responses via oxidative stress in cardiomyocytes and explored the attenuation mechanisms of pterostilbene. We observed fructose-induced myocardial hypertrophy and fibrosis with ROS overproduction in rats. Paired-like homeodomain 2 (Pitx2c) increase, microRNA-15b (miR-15b) low expression, and p53 phosphorylation (p-p53) upregulation, as well as activation of transforming growth factor-β1 (TGF-β1)/drosophila mothers against DPP homolog (Smads) signaling and connective tissue growth factor (CTGF) induction, were also detected in fructose-fed rat hearts and fructose-exposed rat myocardial cell line H9c2 cells. The results from p53 siRNA or TGF-β1 siRNA transfection showed that TGF-β1-induced upregulation of CTGF expression and p-p53 activated TGF-β1/Smads signaling in fructose-exposed H9c2 cells. Of note, Pitx2c negatively modulated miR-15b expression via binding to the upstream of the miR-15b genetic loci by chromatin immunoprecipitation and transfection analysis with pEX1-Pitx2c plasmid and Pitx2c siRNA, respectively. In H9c2 cells pretreated with ROS scavenger N-acetylcysteine, or transfected with miR-15b mimic and inhibitor, fructose-induced cardiac ROS overload could drive Pitx2c-mediated miR-15b low expression, then cause p-p53-activated TGF-β1/Smads signaling and CTGF induction in myocardial fibrosis. We also found that pterostilbene significantly improved myocardial hypertrophy and fibrosis in fructose-fed rats and fructose-exposed H9c2 cells. Pterostilbene reduced cardiac ROS to block Pitx2c-mediated miR-15b low expression and p-p53-dependent TGF-β1/Smads signaling activation and CTGF induction in high fructose-induced myocardial fibrosis. These results firstly demonstrated that the ROS-driven Pitx2c/miR-15b pathway was required for p-p53-dependent TGF-β1/Smads signaling activation in fructose-induced myocardial fibrosis. Pterostilbene protected against high fructose-induced myocardial fibrosis through the inhibition of Pitx2c/miR-15b pathway to suppress p-p53-activated TGF-β1/Smads signaling, warranting the consideration of Pitx2c/miR-15b pathway as a therapeutic target in myocardial fibrosis.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Qianwen Chu ◽  
Yanmei Zhang ◽  
Shuping Zhong ◽  
Fenfei Gao ◽  
Yicun Chen ◽  
...  

Both c-Jun N-terminal kinase (JNK) and reactive oxygen species (ROS) play important roles in myocardial ischemia/reperfusion (I/R) injury. Our previous studies suggest that N-n-butyl haloperidol iodide (F2) exerts cardioprotection by reducing ROS production and JNK activation caused by I/R. In this study, we hypothesized that there is a JNK/Sab/Src/ROS pathway in the mitochondria in H9c2 cells following hypoxia/reoxygenation (H/R) that induces oxidative stress in the mitochondria and that F2 exerts mitochondrial protective effects during H/R injury by modulating this pathway. The results showed that H/R induced higher-level ROS in the cytoplasm on the one hand and JNK activation and translocation to the mitochondria by colocalization with Sab on the other. Moreover, H/R resulted in mitochondrial Src dephosphorylation, and subsequently, oxidative stress evidenced by the increase in ROS generation and oxidized cardiolipin in the mitochondrial membranes and by the decrease in mitochondrial superoxide dismutase activity and membrane potential. Furthermore, treatment with a JNK inhibitor or Sab small interfering RNA inhibited the mitochondrial translocation of p-JNK, decreased colocalization of p-JNK and Sab on the mitochondria, and reduced Src dephosphorylation and mitochondrial oxidative stress during H/R. In addition, Src dephosphorylation by inhibitor PP2 increased mitochondrial ROS production. F2, like inhibitors of the JNK/Sab/Src/ROS pathway, downregulated the H/R-induced mitochondrial translocation of p-JNK and the colocalization of p-JNK and Sab on the mitochondria, increased Src phosphorylation, and alleviated the above-mentioned mitochondrial oxidative stress. In conclusion, F2 could ameliorate H/R-associated oxidative stress in mitochondria in H9c2 cells through the mitochondrial JNK/Sab/Src/ROS pathway.


Author(s):  
Haiyun Sun ◽  
Chong Wang ◽  
Ying Zhou ◽  
Xingbo Cheng

Objective: Diabetic cardiomyopathy (DCM) is an important complication of diabetes. This study was attempted to discover the effects of long noncoding RNA OIP5-AS1 (OIP5-AS1) on the viability and oxidative stress of cardiomyocyte in DCM. Methods: The expression of OIP5-AS1 and microRNA-34a (miR-34a) in DCM was detected by qRT-PCR. In vitro, DCM was simulated by high glucose (HG, 30 mM) treatment in H9c2 cells. The viability of HG (30 mM)-treated H9c2 cells was examined by MTT assay. The reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were used to evaluate the oxidative stress of HG (30 mM)-treated H9c2 cells. Dual-luciferase reporter assay was used to confirm the interactions among OIP5-AS1, miR-34a and SIRT1. Western blot was applied to analyze the protein expression of SIRT1. Results: The expression of OIP5-AS1 was down-regulated in DCM, but miR-34a was up-regulated. The functional experiment stated that OIP5-AS1 overexpression increased the viability and SOD level, while decreased the ROS and MDA levels in HG (30 mM)-treated H9c2 cells. The mechanical experiment confirmed that OIP5-AS1 and SIRT1 were both targeted by miR-34a with the complementary binding sites at 3′UTR. MiR-34a overexpression inhibited the protein expression of SIRT1. In the feedback experiments, miR-34a overexpression or SIRT1 inhibition weakened the promoting effect on viability, and mitigated the reduction effect on oxidative stress caused by OIP5-AS1 overexpression in HG (30 mM)-treated H9c2 cells. Conclusions: OIP5-AS1 overexpression enhanced viability and attenuated oxidative stress of cardiomyocyte via regulating miR-34a/SIRT1 axis in DCM, providing a new therapeutic target for DCM.


Sign in / Sign up

Export Citation Format

Share Document