Long noncoding RNA OIP5-AS1 overexpression promotes viability and inhibits high glucose-induced oxidative stress of cardiomyocytes by targeting microRNA-34a/SIRT1 axis in diabetic cardiomyopathy

Author(s):  
Haiyun Sun ◽  
Chong Wang ◽  
Ying Zhou ◽  
Xingbo Cheng

Objective: Diabetic cardiomyopathy (DCM) is an important complication of diabetes. This study was attempted to discover the effects of long noncoding RNA OIP5-AS1 (OIP5-AS1) on the viability and oxidative stress of cardiomyocyte in DCM. Methods: The expression of OIP5-AS1 and microRNA-34a (miR-34a) in DCM was detected by qRT-PCR. In vitro, DCM was simulated by high glucose (HG, 30 mM) treatment in H9c2 cells. The viability of HG (30 mM)-treated H9c2 cells was examined by MTT assay. The reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were used to evaluate the oxidative stress of HG (30 mM)-treated H9c2 cells. Dual-luciferase reporter assay was used to confirm the interactions among OIP5-AS1, miR-34a and SIRT1. Western blot was applied to analyze the protein expression of SIRT1. Results: The expression of OIP5-AS1 was down-regulated in DCM, but miR-34a was up-regulated. The functional experiment stated that OIP5-AS1 overexpression increased the viability and SOD level, while decreased the ROS and MDA levels in HG (30 mM)-treated H9c2 cells. The mechanical experiment confirmed that OIP5-AS1 and SIRT1 were both targeted by miR-34a with the complementary binding sites at 3′UTR. MiR-34a overexpression inhibited the protein expression of SIRT1. In the feedback experiments, miR-34a overexpression or SIRT1 inhibition weakened the promoting effect on viability, and mitigated the reduction effect on oxidative stress caused by OIP5-AS1 overexpression in HG (30 mM)-treated H9c2 cells. Conclusions: OIP5-AS1 overexpression enhanced viability and attenuated oxidative stress of cardiomyocyte via regulating miR-34a/SIRT1 axis in DCM, providing a new therapeutic target for DCM.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-jie Xing ◽  
Biao-hu Liu ◽  
Shu-jun Wan ◽  
Yi Cheng ◽  
Si-min Zhou ◽  
...  

Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus (DM). One of the hallmarks of the DCM is enhanced oxidative stress in myocardium. The aim of this study was to research the underlying mechanisms involved in the effects of dapagliflozin (Dap) on myocardial oxidative stress both in streptozotocin-induced DCM rats and rat embryonic cardiac myoblasts H9C2 cells exposed to high glucose (33.0 mM). In in vivo studies, diabetic rats were given Dap (1 mg/ kg/ day) by gavage for eight weeks. Dap treatment obviously ameliorated cardiac dysfunction, and improved myocardial fibrosis, apoptosis and oxidase stress. In in vitro studies, Dap also attenuated the enhanced levels of reactive oxygen species and cell death in H9C2 cells incubated with high glucose. Mechanically, Dap administration remarkably reduced the expression of membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits gp91phox and p22phox, suppressed the p67phox subunit translocation to membrane, and decreased the compensatory elevated copper, zinc superoxide dismutase (Cu/Zn-SOD) protein expression and total SOD activity both in vivo and in vitro. Collectively, our results indicated that Dap protects cardiac myocytes from damage caused by hyperglycemia through suppressing NADPH oxidase-mediated oxidative stress.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Kaifeng Li ◽  
Mengen Zhai ◽  
Liqing Jiang ◽  
Fan Song ◽  
Bin Zhang ◽  
...  

Hyperglycemia-induced oxidative stress and fibrosis play a crucial role in the development of diabetic cardiomyopathy (DCM). Tetrahydrocurcumin (THC), a major bioactive metabolite of natural antioxidant curcumin, is reported to exert even more effective antioxidative and superior antifibrotic properties as well as anti-inflammatory and antidiabetic abilities. This study was designed to investigate the potential protective effects of THC on experimental DCM and its underlying mechanisms, pointing to the role of high glucose-induced oxidative stress and interrelated fibrosis. In STZ-induced diabetic mice, oral administration of THC (120 mg/kg/d) for 12 weeks significantly improved the cardiac function and ameliorated myocardial fibrosis and cardiac hypertrophy, accompanied by reduced reactive oxygen species (ROS) generation. Mechanically, THC administration remarkably increased the expression of the SIRT1 signaling pathway both in vitro and in vivo, further evidenced by decreased downstream molecule Ac-SOD2 and enhanced deacetylated production SOD2, which finally strengthened antioxidative stress capacity proven by repaired activities of SOD and GSH-Px and reduced MDA production. Additionally, THC treatment accomplished its antifibrotic effect by depressing the ROS-induced TGFβ1/Smad3 signaling pathway followed by reduced expression of cardiac fibrotic markers α-SMA, collagen I, and collagen III. Collectively, these finds demonstrated the therapeutic potential of THC treatment to alleviate DCM mainly by attenuating hyperglycemia-induced oxidative stress and fibrosis via activating the SIRT1 pathway.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shintaro Mukohara ◽  
Yutaka Mifune ◽  
Atsuyuki Inui ◽  
Hanako Nishimoto ◽  
Takashi Kurosawa ◽  
...  

Abstract Background Dehydroepiandrosterone (DHEA), an adrenal steroid, has a protective role against diabetes. This study aimed to investigate the in vitro and in vivo protective effects of DHEA against high glucose-induced oxidative stress in tenocytes and tendons. Methods Tenocytes from normal Sprague-Dawley rats were cultured in low-glucose (LG) or high-glucose (HG) medium with or without DHEA. The experimental groups were: control group (LG without DHEA), LG with DHEA, HG without DHEA, and HG with DHEA. Reactive oxygen species (ROS) production, apoptosis, and messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, and interleukin-6 (IL-6) were determined. Further, diabetic rats were divided into a control group and a DHEA-injected group (DHEA group). NOX1 and NOX4 protein expression and mRNA expression of NOX1, NOX4, IL-6, matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-2, and type I and III collagens in the Achilles tendon were determined. Results In rat tenocytes, DHEA decreased the expression of NOX1 and IL-6, ROS accumulation, and apoptotic cells. In the diabetic rat Achilles tendon, NOX1 protein expression and mRNA expression of NOX1, IL-6, MMP-2, TIMP-2, and type III collagen were significantly lower while type I collagen expression was significantly higher in the DHEA group than in the control group. Conclusions DHEA showed antioxidant and anti-inflammatory effects both in vitro and in vivo. Moreover, DHEA improved tendon matrix synthesis and turnover, which are affected by hyperglycemic conditions. DHEA is a potential preventive drug for diabetic tendinopathy.


2021 ◽  
Author(s):  
Shintaro Mukohara ◽  
Yutaka Mifune ◽  
Atsuyuki Inui ◽  
Hanako Nishimoto ◽  
Takashi Kurosawa ◽  
...  

Abstract BackgroundDehydroepiandrosterone (DHEA), an adrenal steroid, has a protective role against diabetes. The aim of this study was to investigate the in vitro and in vivo protective effects of DHEA against high glucose-induced oxidative stress in tenocytes and tendons. Methods In an in vitro study, tenocytes from normal Sprague-Dawley rats were cultured in low-glucose (LG) or high-glucose (HG) medium with or without DHEA. The experimental groups were: control group (LG without DHEA), LG with DHEA, HG without DHEA, and HG with DHEA. Reactive oxygen species (ROS) production, apoptosis, and messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, and interleukin-6 (IL-6) were determined. In the in vivo study, diabetic rats were divided into a control group and a DHEA-injected group (DHEA group). NOX1 and NOX4 protein expression and mRNA expression of NOX1, NOX4, IL-6, matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-2, and type I and III collagens in the Achilles tendon were determined. Results In rat tenocytes, DHEA decreased the expression of NOX1 and IL-6, ROS accumulation, and apoptotic cells. In the diabetic rat Achilles tendon, NOX1 protein expression and mRNA expression of NOX1, IL-6, MMP-2, TIMP-2, and type III collagen were significantly lower, while type I collagen expression was significantly lower in the DHEA group.Conclusions DHEA showed antioxidant and anti-inflammatory effects both in vitro and in vivo. Moreover, DHEA improved tendon matrix synthesis and turnover which are affected by hyperglycemic conditions. DHEA could be a preventive drug for the diabetic tendinopathy.


2021 ◽  
Vol 11 (5) ◽  
pp. 1003-1009
Author(s):  
Liping Hu ◽  
Rui Zhang ◽  
Jianhua Wu ◽  
Chao Feng ◽  
Li Kong

Diabetic retinopathy (DR) is a serious microvascular complication of diabetes, contributing to visual impairment and blindness. Sequoyitol (Seq), a form of inositol derivatives, has been demonstrated to be a therapeutic potential for diabetes and diabetic nephropathy. The aim of this study is to explore the effects of Seq on DR. ARPE-19 cells were cultured in high glucose (HG) condition to simulate DR in vitro. Seq (1,10 and 20 µM) was applied for treatment. CCK-8 assay was performed to detect cell viability. Flow cytometry analysis was conducted to determine cell apoptosis rate. The production level of inflammatory cytokines and oxidative stress-related factors were determined using their commercial kits. The protein expressions of corresponding genes were detected using western blotting. The results revealed that Seq significantly increased cell viability and protein expression of PCNA and Ki67 which were decreased after HG induction. HG promoted cell apoptosis by decreasing protein expression of Bcl-2 and increasing protein expression of Bax and cleaved caspase-3, which was then reversed by Seq treatment. Besides, Seq abolished the promoting effects of HG on the production of pro-inflammatory cytokines and oxidative stress-related factors. Furthermore, Seq suppressed the promoting effect of HG on the activation of NF-κB signaling by inhibiting phosphorylation of kBa and NF-κB nucleus translocation. These results indicated that Seq might protect ARPE-19 cells against HG-induced cell viability, apoptosis, inflammation and oxidative stress by regulating NF-κB signaling, providing evidence for the potential application of Seq in the therapy of DR.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ying Jiang ◽  
Shan Jin ◽  
Shisheng Tan ◽  
Yingbo Xue ◽  
Xue Cao

Abstract Background Long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) exhibits an oncogenic role in multiple cancers, including gastric cancer (GC). But, the functions of NEAT1 in modulating radio-sensitivity of GC and its potential molecular mechanisms have not been totally elucidated. Methods qRT-PCR was performed to detect the expressions of NEAT1 and microRNA-27b-3p (miR-27b-3p). Kaplan–Meier survival curves for NEAT1 expression in GC created using KM Plotter. Colony formation assay was used to determine the survival fraction. Cell apoptosis was evaluated by flow cytometry. Luciferase reporter assay was used to verify the relationship between miR-27b-3p and NEAT1. Results NEAT1 was highly expressed while miR-27b-3p was downregulated in GC tissues and cells. NEAT1 was negatively correlated with that of miR-27b-3p and associated with poor overall survival. Moreover, NEAT1 and miR-27b-3p varied inversely after radiation in GC tissues and cells. Loss of NEAT1 or upregulation of miR-27b-3p increased the effect of radiation on cell survival fraction inhibition and apoptosis promotion. In addition, NEAT1 negatively regulated the expression of miR-27b-3p in GC cells. Interestingly, the depletion of miR-27b-3p dramatically attenuated the NEAT1 knockdown-mediated function in AGS and MKN-45 cells treated with radiation in vitro. Similarly, downregulation of NEAT1 enhanced the radiation-mediated inhibition of tumor growth, which was mitigated by decrease of miR-27b-3p. Conclusion NEAT1 depletion enhanced radio-sensitivity of GC by negatively regulating miR-27b-3p in vitro and in vivo.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1646
Author(s):  
Justine E. Yu ◽  
Julia A. Ju ◽  
Nicholas Musacchio ◽  
Trevor J. Mathias ◽  
Michele I. Vitolo

Long noncoding RNA differentiation antagonizing nonprotein coding RNA (lncRNA-DANCR) is associated with poor prognosis in multiple cancers, and promotes cancer stemness and invasion. However, the exact mechanisms by which DANCR promotes non-small cell lung cancer (NSCLC) remain elusive. In this study, we determined that DANCR knockdown (KD) impeded cell migration and reduced stem-like characteristics in two NSCLC cell lines, A549 and H1755. Wnt signaling was shown to promote NSCLC proliferation, stemness, and invasion; therefore, we hypothesized that DANCR may regulate these activities through induction of the Wnt/β-catenin pathway. DANCR KD reduced β-catenin signaling and protein expression, and decreased the expression of β-catenin gene targets c-Myc and Axin2. One of the well-defined functions of lncRNAs is their ability to bind and inhibit microRNAs. Through in silico analysis, we identified tumor suppressor miR-216a as a potential binding partner to DANCR, and confirmed this binding through coimmunoprecipitation and luciferase-reporter assays. Furthermore, we show that DANCR-induced β-catenin protein expression may be blocked with miR-216a overexpression. Our findings illustrate a role of DANCR in NSCLC migration and stemness, and suggest a novel DANCR/miR-216a signaling axis in the Wnt/β-catenin pathway.


Author(s):  
Weijuan Lei ◽  
Juliar Lin ◽  
Fang Liu ◽  
Nina Chen

PURPOSE: Acute myeloid leukemia (AML) is a type of hematologic malignancy. This study was attempt to explore the effect of long noncoding RNA GAS6 antisense RNA1 (GAS6-AS1) on pediatric AML and the regulation mechanisms. METHODS: GAS6-AS1, microRNA-370-3p (miR-370-3p), and Tetraspanin3 (TSPAN3) expression in bone marrow (BM) tissues and cells was determined by qRT-PCR. The correlation between GAS6-AS1 and clinicopathological features of pediatric patients with AML was assessed. In vitro, viability and migration and invasion of AML cells were evaluated via MTT and transwell assays, respectively. Interactions among GAS6-AS1, miR-370-3p, and TSPAN3 were revealed by dual-luciferase reporter assays. Western blot was applied to confirm the protein expression of TSPAN3. RESULTS: GAS6-AS1 and TSPAN3 expression was elevated in BM tissues of pediatric patients with AML and AML cells, but miR-370-3p expression was reduced. GAS6-AS1 expression was positively related to French-American-British (FAB) classification in pediatric patients with AML. In vitro, GAS6-AS1 deficiency restrained the viability, migration, and invasion of AML cells. Additionally, GAS6-AS1 mediated miR-370-3p expression indeed and TSPAN3 was identified as a target of miR-370-3p. Furthermore, miR-370-3p overexpression repressed the protein expression of TSPAN3. The feedback experiments demonstrated that miR-370-3p inhibition or TSPAN3 overexpression mitigated the suppressive effect of sh-GAS6-AS1 on the tumorigenesis of AML cells. CONCLUSION: GAS6-AS1 silencing restrained AML cell viability, migration, and invasion by targeting miR-370-3p/TSPAN3 axis, affording a novel therapeutic target for pediatric AML.


Author(s):  
Guojie Chen ◽  
Kai Wang ◽  
Guoshu Li ◽  
Leidong Wang ◽  
Yangyang Xiao ◽  
...  

Long noncoding RNA LAMTOR5 antisense RNA 1 (LAMTOR5-AS1) has been certified as a risk predictor and diagnostic biomarker of prostate cancer. However, the expression and exact roles of LAMTOR5-AS1 in non-small cell lung cancer (NSCLC) remain unclear. Thus, we measured LAMTOR5-AS1 expression in NSCLC and gauged its clinical value. The detailed roles and downstream working mechanism of LAMTOR5-AS1 in NSCLC were comprehensively unraveled. qRT-PCR was applied to measure gene expression. Functionally, utilizing small interfering RNA, LAMTOR5-AS1 was ablated, and the functional alterations were addressed by means of different experiments. The targeting activities between LAMTOR5-AS1 and microRNA-506-3p (miR-506-3p) and between miR-506-3p and E2F transcription factor 6 (E2F6) were confirmed by RNA immunoprecipitation and luciferase reporter assays. LAMTOR5-AS1 overexpression in NSCLC was verified in TCGA datasets and our own cohort and manifested an evident relationship with poor prognosis. Interference with LAMTOR5-AS1 led to repression of the proliferation, cloning and metastasis abilities of NSCLC cells in vitro. We further confirmed an obvious increase in LAMTOR5-AS1-silenced NSCLC cell apoptosis. Furthermore, the absence of LAMTOR5-AS1 restricted tumor growth in vivo. Mechanistically, LAMTOR5-AS1 sponged miR-506-3p in NSCLC cells. Furthermore, E2F6, a downstream target of miR-506-3p, was under the control of LAMTOR5-AS1, which was realized by decoying miR-506-3p. Rescue experiments showed that miR-506-3p suppression or E2F6 reintroduction was capable of remitting LAMTOR5-AS1 deficiency-triggered anticarcinogenic actions in NSCLC. Our study confirmed the exact roles of LAMTOR5-AS1 for the first time and revealed that LAMTOR5-AS1 knockdown disrupts the malignancy of NSCLC by targeting the miR-506-3p/E2F6 axis. Targeting the LAMTOR5-AS1/miR-506-3p/E2F6 pathway may be instrumental for managing patients with NSCLC.


Author(s):  
Guangfu Di ◽  
Xinjie Yang ◽  
Feng Cheng ◽  
Hua Liu ◽  
Min Xu

Cerebral ischemia/reperfusion (I/R) can lead to serious brain function impairments. Long noncoding RNA (lncRNA) CCAAT enhancer binding protein α antisense RNA 1 (CEBPA-AS1) was shown to be upregulated in human ischemic stroke. This work investigated the function and mechanism of CEBPA-AS1 in I/R. An oxygen-glucose deprivation/reperfusion (OGD/R) model was used to induce I/R injury in SH-SY5Y cells in vitro. RT-qPCR examined the expression of CEBPA-AS1, microRNA-24-3p (miR-24-3p), and Bcl-2-related ovarian killer (Bok). The cell viability, apoptosis, oxidative stress in OGD/R-treated cells were detected using CCK-8, flow cytometry, western blot, ELISA assays. The relationship among genes was tested by RNA pulldown and luciferase reporter assays. We found that OGD/R upregulated CEBPA-AS1 expression in SH-SY5Y cells. Functionally, CEBPA-AS1 depletion ameliorated OGD/R-induced apoptosis and oxidative stress in SH-SY5Y cells by reducing ROS production and superoxide dismutase (SOD) and glutathione (GSH). Mechanistic investigations indicated that CEBPA-AS1 acts as a sponge for miR-24-3p, and miR-24-3p binds to the BOK. Moreover, miR-24-3p upregulation or BOK downregulation antagonized the protective role of CEBPA-AS1 depletion in SH-SY5Y cells exposed to OGD/R. Overall, downregulation of CEBPA-AS1 exerts protective functions against OGD/R-induced injury by targeting the miR-24-3p/BOK axis.


Sign in / Sign up

Export Citation Format

Share Document